Metamath Proof Explorer


Theorem jm2.25

Description: Lemma for jm2.26 . Remainders mod X(2n) are negaperiodic mod 2n. (Contributed by Stefan O'Rear, 2-Oct-2014)

Ref Expression
Assertion jm2.25 A2MNIAXrmNAYrmM+I2 NAYrmMAXrmNAYrmM+I2 NAYrmM

Proof

Step Hyp Ref Expression
1 simprl IA2MNA2
2 simprrr IA2MNN
3 frmx Xrm:2×0
4 3 fovcl A2NAXrmN0
5 4 nn0zd A2NAXrmN
6 1 2 5 syl2anc IA2MNAXrmN
7 simprrl IA2MNM
8 frmy Yrm:2×
9 8 fovcl A2MAYrmM
10 1 7 9 syl2anc IA2MNAYrmM
11 congid AXrmNAYrmMAXrmNAYrmMAYrmM
12 6 10 11 syl2anc IA2MNAXrmNAYrmMAYrmM
13 2cnd N2
14 zcn NN
15 13 14 mulcld N2 N
16 15 mul02d N02 N=0
17 16 adantl MN02 N=0
18 17 oveq2d MNM+02 N=M+0
19 zcn MM
20 19 addridd MM+0=M
21 20 adantr MNM+0=M
22 18 21 eqtrd MNM+02 N=M
23 22 ad2antll IA2MNM+02 N=M
24 23 oveq2d IA2MNAYrmM+02 N=AYrmM
25 24 oveq1d IA2MNAYrmM+02 NAYrmM=AYrmMAYrmM
26 12 25 breqtrrd IA2MNAXrmNAYrmM+02 NAYrmM
27 26 orcd IA2MNAXrmNAYrmM+02 NAYrmMAXrmNAYrmM+02 NAYrmM
28 27 ex IA2MNAXrmNAYrmM+02 NAYrmMAXrmNAYrmM+02 NAYrmM
29 simprl bA2MNA2
30 simprrr bA2MNN
31 29 30 5 syl2anc bA2MNAXrmN
32 simprrl bA2MNM
33 29 32 9 syl2anc bA2MNAYrmM
34 simpl bA2MNb
35 34 peano2zd bA2MNb+1
36 eluzel2 A22
37 36 ad2antrl bA2MN2
38 37 30 zmulcld bA2MN2 N
39 35 38 zmulcld bA2MNb+12 N
40 32 39 zaddcld bA2MNM+b+12 N
41 8 fovcl A2M+b+12 NAYrmM+b+12 N
42 29 40 41 syl2anc bA2MNAYrmM+b+12 N
43 34 38 zmulcld bA2MNb2 N
44 32 43 zaddcld bA2MNM+b2 N
45 8 fovcl A2M+b2 NAYrmM+b2 N
46 29 44 45 syl2anc bA2MNAYrmM+b2 N
47 3 fovcl A22 NAXrm2 N0
48 47 nn0zd A22 NAXrm2 N
49 29 38 48 syl2anc bA2MNAXrm2 N
50 46 49 zmulcld bA2MNAYrmM+b2 NAXrm2 N
51 46 znegcld bA2MNAYrmM+b2 N
52 50 51 zsubcld bA2MNAYrmM+b2 NAXrm2 NAYrmM+b2 N
53 3 fovcl A2M+b2 NAXrmM+b2 N0
54 53 nn0zd A2M+b2 NAXrmM+b2 N
55 29 44 54 syl2anc bA2MNAXrmM+b2 N
56 8 fovcl A22 NAYrm2 N
57 29 38 56 syl2anc bA2MNAYrm2 N
58 55 57 zmulcld bA2MNAXrmM+b2 NAYrm2 N
59 37 31 zmulcld bA2MN2AXrmN
60 dvdsmul2 2AXrmNAXrmNAXrmN2AXrmNAXrmN
61 59 31 60 syl2anc bA2MNAXrmN2AXrmNAXrmN
62 rmxdbl A2NAXrm2 N=2AXrmN21
63 29 30 62 syl2anc bA2MNAXrm2 N=2AXrmN21
64 63 oveq1d bA2MNAXrm2 N+1=2AXrmN2-1+1
65 2cnd bA2MN2
66 29 30 4 syl2anc bA2MNAXrmN0
67 66 nn0cnd bA2MNAXrmN
68 67 sqcld bA2MNAXrmN2
69 65 68 mulcld bA2MN2AXrmN2
70 1cnd bA2MN1
71 69 70 npcand bA2MN2AXrmN2-1+1=2AXrmN2
72 67 sqvald bA2MNAXrmN2=AXrmNAXrmN
73 72 oveq2d bA2MN2AXrmN2=2AXrmNAXrmN
74 mulass 2AXrmNAXrmN2AXrmNAXrmN=2AXrmNAXrmN
75 74 eqcomd 2AXrmNAXrmN2AXrmNAXrmN=2AXrmNAXrmN
76 65 67 67 75 syl3anc bA2MN2AXrmNAXrmN=2AXrmNAXrmN
77 73 76 eqtrd bA2MN2AXrmN2=2AXrmNAXrmN
78 64 71 77 3eqtrd bA2MNAXrm2 N+1=2AXrmNAXrmN
79 61 78 breqtrrd bA2MNAXrmNAXrm2 N+1
80 49 peano2zd bA2MNAXrm2 N+1
81 dvdsmultr2 AXrmNAYrmM+b2 NAXrm2 N+1AXrmNAXrm2 N+1AXrmNAYrmM+b2 NAXrm2 N+1
82 31 46 80 81 syl3anc bA2MNAXrmNAXrm2 N+1AXrmNAYrmM+b2 NAXrm2 N+1
83 79 82 mpd bA2MNAXrmNAYrmM+b2 NAXrm2 N+1
84 46 zcnd bA2MNAYrmM+b2 N
85 84 mulridd bA2MNAYrmM+b2 N1=AYrmM+b2 N
86 85 oveq2d bA2MNAYrmM+b2 NAXrm2 N+AYrmM+b2 N1=AYrmM+b2 NAXrm2 N+AYrmM+b2 N
87 49 zcnd bA2MNAXrm2 N
88 84 87 70 adddid bA2MNAYrmM+b2 NAXrm2 N+1=AYrmM+b2 NAXrm2 N+AYrmM+b2 N1
89 50 zcnd bA2MNAYrmM+b2 NAXrm2 N
90 89 84 subnegd bA2MNAYrmM+b2 NAXrm2 NAYrmM+b2 N=AYrmM+b2 NAXrm2 N+AYrmM+b2 N
91 86 88 90 3eqtr4d bA2MNAYrmM+b2 NAXrm2 N+1=AYrmM+b2 NAXrm2 NAYrmM+b2 N
92 83 91 breqtrd bA2MNAXrmNAYrmM+b2 NAXrm2 NAYrmM+b2 N
93 8 fovcl A2NAYrmN
94 29 30 93 syl2anc bA2MNAYrmN
95 37 94 zmulcld bA2MN2AYrmN
96 dvdsmul2 2AYrmNAXrmNAXrmN2AYrmNAXrmN
97 95 31 96 syl2anc bA2MNAXrmN2AYrmNAXrmN
98 rmydbl A2NAYrm2 N=2AXrmNAYrmN
99 29 30 98 syl2anc bA2MNAYrm2 N=2AXrmNAYrmN
100 94 zcnd bA2MNAYrmN
101 65 67 100 mul32d bA2MN2AXrmNAYrmN=2AYrmNAXrmN
102 99 101 eqtrd bA2MNAYrm2 N=2AYrmNAXrmN
103 97 102 breqtrrd bA2MNAXrmNAYrm2 N
104 dvdsmultr2 AXrmNAXrmM+b2 NAYrm2 NAXrmNAYrm2 NAXrmNAXrmM+b2 NAYrm2 N
105 31 55 57 104 syl3anc bA2MNAXrmNAYrm2 NAXrmNAXrmM+b2 NAYrm2 N
106 103 105 mpd bA2MNAXrmNAXrmM+b2 NAYrm2 N
107 31 52 58 92 106 dvds2addd bA2MNAXrmNAYrmM+b2 NAXrm2 N-AYrmM+b2 N+AXrmM+b2 NAYrm2 N
108 34 zcnd bA2MNb
109 38 zcnd bA2MN2 N
110 108 70 109 adddird bA2MNb+12 N=b2 N+12 N
111 110 oveq2d bA2MNM+b+12 N=M+b2 N+12 N
112 32 zcnd bA2MNM
113 43 zcnd bA2MNb2 N
114 1zzd bA2MN1
115 114 38 zmulcld bA2MN12 N
116 115 zcnd bA2MN12 N
117 112 113 116 addassd bA2MNM+b2 N+12 N=M+b2 N+12 N
118 109 mullidd bA2MN12 N=2 N
119 118 oveq2d bA2MNM+b2 N+12 N=M+b2 N+2 N
120 111 117 119 3eqtr2d bA2MNM+b+12 N=M+b2 N+2 N
121 120 oveq2d bA2MNAYrmM+b+12 N=AYrmM+b2 N+2 N
122 rmyadd A2M+b2 N2 NAYrmM+b2 N+2 N=AYrmM+b2 NAXrm2 N+AXrmM+b2 NAYrm2 N
123 29 44 38 122 syl3anc bA2MNAYrmM+b2 N+2 N=AYrmM+b2 NAXrm2 N+AXrmM+b2 NAYrm2 N
124 121 123 eqtrd bA2MNAYrmM+b+12 N=AYrmM+b2 NAXrm2 N+AXrmM+b2 NAYrm2 N
125 124 oveq1d bA2MNAYrmM+b+12 NAYrmM+b2 N=AYrmM+b2 NAXrm2 N+AXrmM+b2 NAYrm2 N-AYrmM+b2 N
126 58 zcnd bA2MNAXrmM+b2 NAYrm2 N
127 51 zcnd bA2MNAYrmM+b2 N
128 89 126 127 addsubd bA2MNAYrmM+b2 NAXrm2 N+AXrmM+b2 NAYrm2 N-AYrmM+b2 N=AYrmM+b2 NAXrm2 N-AYrmM+b2 N+AXrmM+b2 NAYrm2 N
129 125 128 eqtrd bA2MNAYrmM+b+12 NAYrmM+b2 N=AYrmM+b2 NAXrm2 N-AYrmM+b2 N+AXrmM+b2 NAYrm2 N
130 107 129 breqtrrd bA2MNAXrmNAYrmM+b+12 NAYrmM+b2 N
131 130 olcd bA2MNAXrmNAYrmM+b+12 NAYrmM+b2 NAXrmNAYrmM+b+12 NAYrmM+b2 N
132 jm2.25lem1 AXrmNAYrmMAYrmM+b+12 NAYrmM+b2 NAXrmNAYrmM+b+12 NAYrmM+b2 NAXrmNAYrmM+b+12 NAYrmM+b2 NAXrmNAYrmM+b2 NAYrmMAXrmNAYrmM+b2 NAYrmMAXrmNAYrmM+b+12 NAYrmMAXrmNAYrmM+b+12 NAYrmM
133 31 33 42 46 131 132 syl221anc bA2MNAXrmNAYrmM+b2 NAYrmMAXrmNAYrmM+b2 NAYrmMAXrmNAYrmM+b+12 NAYrmMAXrmNAYrmM+b+12 NAYrmM
134 133 pm5.74da bA2MNAXrmNAYrmM+b2 NAYrmMAXrmNAYrmM+b2 NAYrmMA2MNAXrmNAYrmM+b+12 NAYrmMAXrmNAYrmM+b+12 NAYrmM
135 oveq1 a=ba2 N=b2 N
136 135 oveq2d a=bM+a2 N=M+b2 N
137 136 oveq2d a=bAYrmM+a2 N=AYrmM+b2 N
138 137 oveq1d a=bAYrmM+a2 NAYrmM=AYrmM+b2 NAYrmM
139 138 breq2d a=bAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+b2 NAYrmM
140 137 oveq1d a=bAYrmM+a2 NAYrmM=AYrmM+b2 NAYrmM
141 140 breq2d a=bAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+b2 NAYrmM
142 139 141 orbi12d a=bAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+b2 NAYrmMAXrmNAYrmM+b2 NAYrmM
143 142 imbi2d a=bA2MNAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+a2 NAYrmMA2MNAXrmNAYrmM+b2 NAYrmMAXrmNAYrmM+b2 NAYrmM
144 oveq1 a=b+1a2 N=b+12 N
145 144 oveq2d a=b+1M+a2 N=M+b+12 N
146 145 oveq2d a=b+1AYrmM+a2 N=AYrmM+b+12 N
147 146 oveq1d a=b+1AYrmM+a2 NAYrmM=AYrmM+b+12 NAYrmM
148 147 breq2d a=b+1AXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+b+12 NAYrmM
149 146 oveq1d a=b+1AYrmM+a2 NAYrmM=AYrmM+b+12 NAYrmM
150 149 breq2d a=b+1AXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+b+12 NAYrmM
151 148 150 orbi12d a=b+1AXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+b+12 NAYrmMAXrmNAYrmM+b+12 NAYrmM
152 151 imbi2d a=b+1A2MNAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+a2 NAYrmMA2MNAXrmNAYrmM+b+12 NAYrmMAXrmNAYrmM+b+12 NAYrmM
153 oveq1 a=0a2 N=02 N
154 153 oveq2d a=0M+a2 N=M+02 N
155 154 oveq2d a=0AYrmM+a2 N=AYrmM+02 N
156 155 oveq1d a=0AYrmM+a2 NAYrmM=AYrmM+02 NAYrmM
157 156 breq2d a=0AXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+02 NAYrmM
158 155 oveq1d a=0AYrmM+a2 NAYrmM=AYrmM+02 NAYrmM
159 158 breq2d a=0AXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+02 NAYrmM
160 157 159 orbi12d a=0AXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+02 NAYrmMAXrmNAYrmM+02 NAYrmM
161 160 imbi2d a=0A2MNAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+a2 NAYrmMA2MNAXrmNAYrmM+02 NAYrmMAXrmNAYrmM+02 NAYrmM
162 oveq1 a=Ia2 N=I2 N
163 162 oveq2d a=IM+a2 N=M+I2 N
164 163 oveq2d a=IAYrmM+a2 N=AYrmM+I2 N
165 164 oveq1d a=IAYrmM+a2 NAYrmM=AYrmM+I2 NAYrmM
166 165 breq2d a=IAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+I2 NAYrmM
167 164 oveq1d a=IAYrmM+a2 NAYrmM=AYrmM+I2 NAYrmM
168 167 breq2d a=IAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+I2 NAYrmM
169 166 168 orbi12d a=IAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+I2 NAYrmMAXrmNAYrmM+I2 NAYrmM
170 169 imbi2d a=IA2MNAXrmNAYrmM+a2 NAYrmMAXrmNAYrmM+a2 NAYrmMA2MNAXrmNAYrmM+I2 NAYrmMAXrmNAYrmM+I2 NAYrmM
171 134 143 152 161 170 zindbi IA2MNAXrmNAYrmM+02 NAYrmMAXrmNAYrmM+02 NAYrmMA2MNAXrmNAYrmM+I2 NAYrmMAXrmNAYrmM+I2 NAYrmM
172 28 171 mpbid IA2MNAXrmNAYrmM+I2 NAYrmMAXrmNAYrmM+I2 NAYrmM
173 172 impcom A2MNIAXrmNAYrmM+I2 NAYrmMAXrmNAYrmM+I2 NAYrmM
174 173 3impa A2MNIAXrmNAYrmM+I2 NAYrmMAXrmNAYrmM+I2 NAYrmM