Metamath Proof Explorer


Theorem kgencn2

Description: A function F : J --> K from a compactly generated space is continuous iff for all compact spaces z and continuous g : z --> J , the composite F o. g : z --> K is continuous. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion kgencn2 JTopOnXKTopOnYF𝑘GenJCnKF:XYzCompgzCnJFgzCnK

Proof

Step Hyp Ref Expression
1 kgencn JTopOnXKTopOnYF𝑘GenJCnKF:XYk𝒫XJ𝑡kCompFkJ𝑡kCnK
2 rncmp zCompgzCnJJ𝑡rangComp
3 2 adantl JTopOnXKTopOnYF:XYzCompgzCnJJ𝑡rangComp
4 simprr JTopOnXKTopOnYF:XYzCompgzCnJgzCnJ
5 eqid z=z
6 eqid J=J
7 5 6 cnf gzCnJg:zJ
8 frn g:zJrangJ
9 4 7 8 3syl JTopOnXKTopOnYF:XYzCompgzCnJrangJ
10 toponuni JTopOnXX=J
11 10 ad3antrrr JTopOnXKTopOnYF:XYzCompgzCnJX=J
12 9 11 sseqtrrd JTopOnXKTopOnYF:XYzCompgzCnJrangX
13 vex gV
14 13 rnex rangV
15 14 elpw rang𝒫XrangX
16 12 15 sylibr JTopOnXKTopOnYF:XYzCompgzCnJrang𝒫X
17 oveq2 k=rangJ𝑡k=J𝑡rang
18 17 eleq1d k=rangJ𝑡kCompJ𝑡rangComp
19 reseq2 k=rangFk=Frang
20 17 oveq1d k=rangJ𝑡kCnK=J𝑡rangCnK
21 19 20 eleq12d k=rangFkJ𝑡kCnKFrangJ𝑡rangCnK
22 18 21 imbi12d k=rangJ𝑡kCompFkJ𝑡kCnKJ𝑡rangCompFrangJ𝑡rangCnK
23 22 rspcv rang𝒫Xk𝒫XJ𝑡kCompFkJ𝑡kCnKJ𝑡rangCompFrangJ𝑡rangCnK
24 16 23 syl JTopOnXKTopOnYF:XYzCompgzCnJk𝒫XJ𝑡kCompFkJ𝑡kCnKJ𝑡rangCompFrangJ𝑡rangCnK
25 3 24 mpid JTopOnXKTopOnYF:XYzCompgzCnJk𝒫XJ𝑡kCompFkJ𝑡kCnKFrangJ𝑡rangCnK
26 simplll JTopOnXKTopOnYF:XYzCompgzCnJJTopOnX
27 ssidd JTopOnXKTopOnYF:XYzCompgzCnJrangrang
28 cnrest2 JTopOnXrangrangrangXgzCnJgzCnJ𝑡rang
29 26 27 12 28 syl3anc JTopOnXKTopOnYF:XYzCompgzCnJgzCnJgzCnJ𝑡rang
30 4 29 mpbid JTopOnXKTopOnYF:XYzCompgzCnJgzCnJ𝑡rang
31 cnco gzCnJ𝑡rangFrangJ𝑡rangCnKFranggzCnK
32 31 ex gzCnJ𝑡rangFrangJ𝑡rangCnKFranggzCnK
33 30 32 syl JTopOnXKTopOnYF:XYzCompgzCnJFrangJ𝑡rangCnKFranggzCnK
34 ssid rangrang
35 cores rangrangFrangg=Fg
36 34 35 ax-mp Frangg=Fg
37 36 eleq1i FranggzCnKFgzCnK
38 33 37 imbitrdi JTopOnXKTopOnYF:XYzCompgzCnJFrangJ𝑡rangCnKFgzCnK
39 25 38 syld JTopOnXKTopOnYF:XYzCompgzCnJk𝒫XJ𝑡kCompFkJ𝑡kCnKFgzCnK
40 39 ralrimdvva JTopOnXKTopOnYF:XYk𝒫XJ𝑡kCompFkJ𝑡kCnKzCompgzCnJFgzCnK
41 oveq1 z=J𝑡kzCnJ=J𝑡kCnJ
42 oveq1 z=J𝑡kzCnK=J𝑡kCnK
43 42 eleq2d z=J𝑡kFgzCnKFgJ𝑡kCnK
44 41 43 raleqbidv z=J𝑡kgzCnJFgzCnKgJ𝑡kCnJFgJ𝑡kCnK
45 44 rspcv J𝑡kCompzCompgzCnJFgzCnKgJ𝑡kCnJFgJ𝑡kCnK
46 elpwi k𝒫XkX
47 46 adantl JTopOnXKTopOnYF:XYk𝒫XkX
48 47 resabs1d JTopOnXKTopOnYF:XYk𝒫XIXk=Ik
49 idcn JTopOnXIXJCnJ
50 49 ad3antrrr JTopOnXKTopOnYF:XYk𝒫XIXJCnJ
51 10 ad3antrrr JTopOnXKTopOnYF:XYk𝒫XX=J
52 47 51 sseqtrd JTopOnXKTopOnYF:XYk𝒫XkJ
53 6 cnrest IXJCnJkJIXkJ𝑡kCnJ
54 50 52 53 syl2anc JTopOnXKTopOnYF:XYk𝒫XIXkJ𝑡kCnJ
55 48 54 eqeltrrd JTopOnXKTopOnYF:XYk𝒫XIkJ𝑡kCnJ
56 coeq2 g=IkFg=FIk
57 56 eleq1d g=IkFgJ𝑡kCnKFIkJ𝑡kCnK
58 57 rspcv IkJ𝑡kCnJgJ𝑡kCnJFgJ𝑡kCnKFIkJ𝑡kCnK
59 55 58 syl JTopOnXKTopOnYF:XYk𝒫XgJ𝑡kCnJFgJ𝑡kCnKFIkJ𝑡kCnK
60 coires1 FIk=Fk
61 60 eleq1i FIkJ𝑡kCnKFkJ𝑡kCnK
62 59 61 imbitrdi JTopOnXKTopOnYF:XYk𝒫XgJ𝑡kCnJFgJ𝑡kCnKFkJ𝑡kCnK
63 45 62 syl9r JTopOnXKTopOnYF:XYk𝒫XJ𝑡kCompzCompgzCnJFgzCnKFkJ𝑡kCnK
64 63 com23 JTopOnXKTopOnYF:XYk𝒫XzCompgzCnJFgzCnKJ𝑡kCompFkJ𝑡kCnK
65 64 ralrimdva JTopOnXKTopOnYF:XYzCompgzCnJFgzCnKk𝒫XJ𝑡kCompFkJ𝑡kCnK
66 40 65 impbid JTopOnXKTopOnYF:XYk𝒫XJ𝑡kCompFkJ𝑡kCnKzCompgzCnJFgzCnK
67 66 pm5.32da JTopOnXKTopOnYF:XYk𝒫XJ𝑡kCompFkJ𝑡kCnKF:XYzCompgzCnJFgzCnK
68 1 67 bitrd JTopOnXKTopOnYF𝑘GenJCnKF:XYzCompgzCnJFgzCnK