Metamath Proof Explorer


Theorem lcdvsubval

Description: The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 11-Jun-2015)

Ref Expression
Hypotheses lcdvsubval.h H=LHypK
lcdvsubval.u U=DVecHKW
lcdvsubval.v V=BaseU
lcdvsubval.r R=ScalarU
lcdvsubval.s S=-R
lcdvsubval.c C=LCDualKW
lcdvsubval.d D=BaseC
lcdvsubval.m -˙=-C
lcdvsubval.k φKHLWH
lcdvsubval.f φFD
lcdvsubval.g φGD
lcdvsubval.x φXV
Assertion lcdvsubval φF-˙GX=FXSGX

Proof

Step Hyp Ref Expression
1 lcdvsubval.h H=LHypK
2 lcdvsubval.u U=DVecHKW
3 lcdvsubval.v V=BaseU
4 lcdvsubval.r R=ScalarU
5 lcdvsubval.s S=-R
6 lcdvsubval.c C=LCDualKW
7 lcdvsubval.d D=BaseC
8 lcdvsubval.m -˙=-C
9 lcdvsubval.k φKHLWH
10 lcdvsubval.f φFD
11 lcdvsubval.g φGD
12 lcdvsubval.x φXV
13 1 6 9 lcdlmod φCLMod
14 eqid +C=+C
15 eqid ScalarC=ScalarC
16 eqid C=C
17 eqid invgScalarC=invgScalarC
18 eqid 1ScalarC=1ScalarC
19 7 14 8 15 16 17 18 lmodvsubval2 CLModFDGDF-˙G=F+CinvgScalarC1ScalarCCG
20 13 10 11 19 syl3anc φF-˙G=F+CinvgScalarC1ScalarCCG
21 20 fveq1d φF-˙GX=F+CinvgScalarC1ScalarCCGX
22 eqid +R=+R
23 eqid BaseR=BaseR
24 15 lmodfgrp CLModScalarCGrp
25 13 24 syl φScalarCGrp
26 15 lmodring CLModScalarCRing
27 13 26 syl φScalarCRing
28 eqid BaseScalarC=BaseScalarC
29 28 18 ringidcl ScalarCRing1ScalarCBaseScalarC
30 27 29 syl φ1ScalarCBaseScalarC
31 28 17 grpinvcl ScalarCGrp1ScalarCBaseScalarCinvgScalarC1ScalarCBaseScalarC
32 25 30 31 syl2anc φinvgScalarC1ScalarCBaseScalarC
33 1 2 4 23 6 15 28 9 lcdsbase φBaseScalarC=BaseR
34 32 33 eleqtrd φinvgScalarC1ScalarCBaseR
35 1 2 4 23 6 7 16 9 34 11 lcdvscl φinvgScalarC1ScalarCCGD
36 1 2 3 4 22 6 7 14 9 10 35 12 lcdvaddval φF+CinvgScalarC1ScalarCCGX=FX+RinvgScalarC1ScalarCCGX
37 eqid invgR=invgR
38 1 2 4 37 6 15 17 9 lcdneg φinvgScalarC=invgR
39 eqid 1R=1R
40 1 2 4 39 6 15 18 9 lcd1 φ1ScalarC=1R
41 38 40 fveq12d φinvgScalarC1ScalarC=invgR1R
42 41 oveq1d φinvgScalarC1ScalarCCG=invgR1RCG
43 42 fveq1d φinvgScalarC1ScalarCCGX=invgR1RCGX
44 eqid R=R
45 1 2 9 dvhlmod φULMod
46 4 lmodring ULModRRing
47 45 46 syl φRRing
48 ringgrp RRingRGrp
49 47 48 syl φRGrp
50 4 23 39 lmod1cl ULMod1RBaseR
51 45 50 syl φ1RBaseR
52 23 37 grpinvcl RGrp1RBaseRinvgR1RBaseR
53 49 51 52 syl2anc φinvgR1RBaseR
54 1 2 3 4 23 44 6 7 16 9 53 11 12 lcdvsval φinvgR1RCGX=GXRinvgR1R
55 1 2 3 4 23 6 7 9 11 12 lcdvbasecl φGXBaseR
56 23 44 39 37 47 55 ringnegr φGXRinvgR1R=invgRGX
57 43 54 56 3eqtrd φinvgScalarC1ScalarCCGX=invgRGX
58 57 oveq2d φFX+RinvgScalarC1ScalarCCGX=FX+RinvgRGX
59 1 2 3 4 23 6 7 9 10 12 lcdvbasecl φFXBaseR
60 23 22 37 5 grpsubval FXBaseRGXBaseRFXSGX=FX+RinvgRGX
61 59 55 60 syl2anc φFXSGX=FX+RinvgRGX
62 58 61 eqtr4d φFX+RinvgScalarC1ScalarCCGX=FXSGX
63 21 36 62 3eqtrd φF-˙GX=FXSGX