Description: The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace Q is closed under scalar product. (Contributed by NM, 28-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lclkrslem1.h | |
|
lclkrslem1.o | |
||
lclkrslem1.u | |
||
lclkrslem1.s | |
||
lclkrslem1.f | |
||
lclkrslem1.l | |
||
lclkrslem1.d | |
||
lclkrslem1.r | |
||
lclkrslem1.b | |
||
lclkrslem1.t | |
||
lclkrslem1.c | |
||
lclkrslem1.k | |
||
lclkrslem1.q | |
||
lclkrslem1.g | |
||
lclkrslem2.p | |
||
lclkrslem2.e | |
||
Assertion | lclkrslem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrslem1.h | |
|
2 | lclkrslem1.o | |
|
3 | lclkrslem1.u | |
|
4 | lclkrslem1.s | |
|
5 | lclkrslem1.f | |
|
6 | lclkrslem1.l | |
|
7 | lclkrslem1.d | |
|
8 | lclkrslem1.r | |
|
9 | lclkrslem1.b | |
|
10 | lclkrslem1.t | |
|
11 | lclkrslem1.c | |
|
12 | lclkrslem1.k | |
|
13 | lclkrslem1.q | |
|
14 | lclkrslem1.g | |
|
15 | lclkrslem2.p | |
|
16 | lclkrslem2.e | |
|
17 | eqid | |
|
18 | 11 17 | lcfls1c | |
19 | 18 | simplbi | |
20 | 16 19 | syl | |
21 | 11 17 | lcfls1c | |
22 | 21 | simplbi | |
23 | 14 22 | syl | |
24 | 1 2 3 5 6 7 15 17 12 20 23 | lclkrlem2 | |
25 | eqid | |
|
26 | 1 3 12 | dvhlmod | |
27 | 11 | lcfls1lem | |
28 | 16 27 | sylib | |
29 | 28 | simp1d | |
30 | 11 | lcfls1lem | |
31 | 14 30 | sylib | |
32 | 31 | simp1d | |
33 | 5 7 15 26 29 32 | ldualvaddcl | |
34 | 25 5 6 26 33 | lkrssv | |
35 | 5 6 7 15 26 29 32 | lkrin | |
36 | 1 3 25 2 | dochss | |
37 | 12 34 35 36 | syl3anc | |
38 | eqid | |
|
39 | eqid | |
|
40 | 28 | simp2d | |
41 | 1 38 2 3 5 6 12 29 | lcfl5a | |
42 | 40 41 | mpbid | |
43 | 31 | simp2d | |
44 | 1 38 2 3 5 6 12 32 | lcfl5a | |
45 | 43 44 | mpbid | |
46 | 1 38 3 25 2 39 12 42 45 | dochdmm1 | |
47 | eqid | |
|
48 | 25 5 6 26 29 | lkrssv | |
49 | 1 38 3 25 2 | dochcl | |
50 | 12 48 49 | syl2anc | |
51 | 1 38 2 3 47 5 6 12 50 32 | dochkrsm | |
52 | 1 3 25 4 2 | dochlss | |
53 | 12 48 52 | syl2anc | |
54 | 25 5 6 26 32 | lkrssv | |
55 | 1 3 25 4 2 | dochlss | |
56 | 12 54 55 | syl2anc | |
57 | 1 3 25 4 47 38 39 12 53 56 | djhlsmcl | |
58 | 51 57 | mpbid | |
59 | 46 58 | eqtr4d | |
60 | 28 | simp3d | |
61 | 31 | simp3d | |
62 | 4 | lsssssubg | |
63 | 26 62 | syl | |
64 | 63 53 | sseldd | |
65 | 63 56 | sseldd | |
66 | 63 13 | sseldd | |
67 | 47 | lsmlub | |
68 | 64 65 66 67 | syl3anc | |
69 | 60 61 68 | mpbi2and | |
70 | 59 69 | eqsstrd | |
71 | 37 70 | sstrd | |
72 | 11 17 | lcfls1c | |
73 | 24 71 72 | sylanbrc | |