Metamath Proof Explorer


Theorem lclkrslem2

Description: The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace Q is closed under scalar product. (Contributed by NM, 28-Jan-2015)

Ref Expression
Hypotheses lclkrslem1.h H=LHypK
lclkrslem1.o ˙=ocHKW
lclkrslem1.u U=DVecHKW
lclkrslem1.s S=LSubSpU
lclkrslem1.f F=LFnlU
lclkrslem1.l L=LKerU
lclkrslem1.d D=LDualU
lclkrslem1.r R=ScalarU
lclkrslem1.b B=BaseR
lclkrslem1.t ·˙=D
lclkrslem1.c C=fF|˙˙Lf=Lf˙LfQ
lclkrslem1.k φKHLWH
lclkrslem1.q φQS
lclkrslem1.g φGC
lclkrslem2.p +˙=+D
lclkrslem2.e φEC
Assertion lclkrslem2 φE+˙GC

Proof

Step Hyp Ref Expression
1 lclkrslem1.h H=LHypK
2 lclkrslem1.o ˙=ocHKW
3 lclkrslem1.u U=DVecHKW
4 lclkrslem1.s S=LSubSpU
5 lclkrslem1.f F=LFnlU
6 lclkrslem1.l L=LKerU
7 lclkrslem1.d D=LDualU
8 lclkrslem1.r R=ScalarU
9 lclkrslem1.b B=BaseR
10 lclkrslem1.t ·˙=D
11 lclkrslem1.c C=fF|˙˙Lf=Lf˙LfQ
12 lclkrslem1.k φKHLWH
13 lclkrslem1.q φQS
14 lclkrslem1.g φGC
15 lclkrslem2.p +˙=+D
16 lclkrslem2.e φEC
17 eqid fF|˙˙Lf=Lf=fF|˙˙Lf=Lf
18 11 17 lcfls1c ECEfF|˙˙Lf=Lf˙LEQ
19 18 simplbi ECEfF|˙˙Lf=Lf
20 16 19 syl φEfF|˙˙Lf=Lf
21 11 17 lcfls1c GCGfF|˙˙Lf=Lf˙LGQ
22 21 simplbi GCGfF|˙˙Lf=Lf
23 14 22 syl φGfF|˙˙Lf=Lf
24 1 2 3 5 6 7 15 17 12 20 23 lclkrlem2 φE+˙GfF|˙˙Lf=Lf
25 eqid BaseU=BaseU
26 1 3 12 dvhlmod φULMod
27 11 lcfls1lem ECEF˙˙LE=LE˙LEQ
28 16 27 sylib φEF˙˙LE=LE˙LEQ
29 28 simp1d φEF
30 11 lcfls1lem GCGF˙˙LG=LG˙LGQ
31 14 30 sylib φGF˙˙LG=LG˙LGQ
32 31 simp1d φGF
33 5 7 15 26 29 32 ldualvaddcl φE+˙GF
34 25 5 6 26 33 lkrssv φLE+˙GBaseU
35 5 6 7 15 26 29 32 lkrin φLELGLE+˙G
36 1 3 25 2 dochss KHLWHLE+˙GBaseULELGLE+˙G˙LE+˙G˙LELG
37 12 34 35 36 syl3anc φ˙LE+˙G˙LELG
38 eqid DIsoHKW=DIsoHKW
39 eqid joinHKW=joinHKW
40 28 simp2d φ˙˙LE=LE
41 1 38 2 3 5 6 12 29 lcfl5a φ˙˙LE=LELEranDIsoHKW
42 40 41 mpbid φLEranDIsoHKW
43 31 simp2d φ˙˙LG=LG
44 1 38 2 3 5 6 12 32 lcfl5a φ˙˙LG=LGLGranDIsoHKW
45 43 44 mpbid φLGranDIsoHKW
46 1 38 3 25 2 39 12 42 45 dochdmm1 φ˙LELG=˙LEjoinHKW˙LG
47 eqid LSSumU=LSSumU
48 25 5 6 26 29 lkrssv φLEBaseU
49 1 38 3 25 2 dochcl KHLWHLEBaseU˙LEranDIsoHKW
50 12 48 49 syl2anc φ˙LEranDIsoHKW
51 1 38 2 3 47 5 6 12 50 32 dochkrsm φ˙LELSSumU˙LGranDIsoHKW
52 1 3 25 4 2 dochlss KHLWHLEBaseU˙LES
53 12 48 52 syl2anc φ˙LES
54 25 5 6 26 32 lkrssv φLGBaseU
55 1 3 25 4 2 dochlss KHLWHLGBaseU˙LGS
56 12 54 55 syl2anc φ˙LGS
57 1 3 25 4 47 38 39 12 53 56 djhlsmcl φ˙LELSSumU˙LGranDIsoHKW˙LELSSumU˙LG=˙LEjoinHKW˙LG
58 51 57 mpbid φ˙LELSSumU˙LG=˙LEjoinHKW˙LG
59 46 58 eqtr4d φ˙LELG=˙LELSSumU˙LG
60 28 simp3d φ˙LEQ
61 31 simp3d φ˙LGQ
62 4 lsssssubg ULModSSubGrpU
63 26 62 syl φSSubGrpU
64 63 53 sseldd φ˙LESubGrpU
65 63 56 sseldd φ˙LGSubGrpU
66 63 13 sseldd φQSubGrpU
67 47 lsmlub ˙LESubGrpU˙LGSubGrpUQSubGrpU˙LEQ˙LGQ˙LELSSumU˙LGQ
68 64 65 66 67 syl3anc φ˙LEQ˙LGQ˙LELSSumU˙LGQ
69 60 61 68 mpbi2and φ˙LELSSumU˙LGQ
70 59 69 eqsstrd φ˙LELGQ
71 37 70 sstrd φ˙LE+˙GQ
72 11 17 lcfls1c E+˙GCE+˙GfF|˙˙Lf=Lf˙LE+˙GQ
73 24 71 72 sylanbrc φE+˙GC