Metamath Proof Explorer


Theorem lgsquad2lem2

Description: Lemma for lgsquad2 . (Contributed by Mario Carneiro, 19-Jun-2015)

Ref Expression
Hypotheses lgsquad2.1 φM
lgsquad2.2 φ¬2M
lgsquad2.3 φN
lgsquad2.4 φ¬2N
lgsquad2.5 φMgcdN=1
lgsquad2lem2.f φm2mgcdN=1m/LNN/Lm=1m12N12
lgsquad2lem2.s ψx1kxgcd2 N=1x/LNN/Lx=1x12N12
Assertion lgsquad2lem2 φM/LNN/LM=1M12N12

Proof

Step Hyp Ref Expression
1 lgsquad2.1 φM
2 lgsquad2.2 φ¬2M
3 lgsquad2.3 φN
4 lgsquad2.4 φ¬2N
5 lgsquad2.5 φMgcdN=1
6 lgsquad2lem2.f φm2mgcdN=1m/LNN/Lm=1m12N12
7 lgsquad2lem2.s ψx1kxgcd2 N=1x/LNN/Lx=1x12N12
8 2nn 2
9 8 a1i φ2
10 1 nnzd φM
11 2z 2
12 gcdcom M2Mgcd2=2gcdM
13 10 11 12 sylancl φMgcd2=2gcdM
14 2prm 2
15 coprm 2M¬2M2gcdM=1
16 14 10 15 sylancr φ¬2M2gcdM=1
17 2 16 mpbid φ2gcdM=1
18 13 17 eqtrd φMgcd2=1
19 rpmulgcd M2NMgcd2=1Mgcd2 N=MgcdN
20 1 9 3 18 19 syl31anc φMgcd2 N=MgcdN
21 20 5 eqtrd φMgcd2 N=1
22 oveq1 m=1m/LN=1/LN
23 oveq2 m=1N/Lm=N/L1
24 22 23 oveq12d m=1m/LNN/Lm=1/LNN/L1
25 oveq1 m=1m1=11
26 1m1e0 11=0
27 25 26 eqtrdi m=1m1=0
28 27 oveq1d m=1m12=02
29 2cn 2
30 2ne0 20
31 29 30 div0i 02=0
32 28 31 eqtrdi m=1m12=0
33 32 oveq1d m=1m12N12=0N12
34 33 oveq2d m=11m12N12=10N12
35 24 34 eqeq12d m=1m/LNN/Lm=1m12N121/LNN/L1=10N12
36 35 imbi2d m=1mgcd2 N=1m/LNN/Lm=1m12N12mgcd2 N=11/LNN/L1=10N12
37 36 imbi2d m=1φmgcd2 N=1m/LNN/Lm=1m12N12φmgcd2 N=11/LNN/L1=10N12
38 oveq1 m=xmgcd2 N=xgcd2 N
39 38 eqeq1d m=xmgcd2 N=1xgcd2 N=1
40 oveq1 m=xm/LN=x/LN
41 oveq2 m=xN/Lm=N/Lx
42 40 41 oveq12d m=xm/LNN/Lm=x/LNN/Lx
43 oveq1 m=xm1=x1
44 43 oveq1d m=xm12=x12
45 44 oveq1d m=xm12N12=x12N12
46 45 oveq2d m=x1m12N12=1x12N12
47 42 46 eqeq12d m=xm/LNN/Lm=1m12N12x/LNN/Lx=1x12N12
48 39 47 imbi12d m=xmgcd2 N=1m/LNN/Lm=1m12N12xgcd2 N=1x/LNN/Lx=1x12N12
49 48 imbi2d m=xφmgcd2 N=1m/LNN/Lm=1m12N12φxgcd2 N=1x/LNN/Lx=1x12N12
50 oveq1 m=ymgcd2 N=ygcd2 N
51 50 eqeq1d m=ymgcd2 N=1ygcd2 N=1
52 oveq1 m=ym/LN=y/LN
53 oveq2 m=yN/Lm=N/Ly
54 52 53 oveq12d m=ym/LNN/Lm=y/LNN/Ly
55 oveq1 m=ym1=y1
56 55 oveq1d m=ym12=y12
57 56 oveq1d m=ym12N12=y12N12
58 57 oveq2d m=y1m12N12=1y12N12
59 54 58 eqeq12d m=ym/LNN/Lm=1m12N12y/LNN/Ly=1y12N12
60 51 59 imbi12d m=ymgcd2 N=1m/LNN/Lm=1m12N12ygcd2 N=1y/LNN/Ly=1y12N12
61 60 imbi2d m=yφmgcd2 N=1m/LNN/Lm=1m12N12φygcd2 N=1y/LNN/Ly=1y12N12
62 oveq1 m=xymgcd2 N=xygcd2 N
63 62 eqeq1d m=xymgcd2 N=1xygcd2 N=1
64 oveq1 m=xym/LN=xy/LN
65 oveq2 m=xyN/Lm=N/Lxy
66 64 65 oveq12d m=xym/LNN/Lm=xy/LNN/Lxy
67 oveq1 m=xym1=xy1
68 67 oveq1d m=xym12=xy12
69 68 oveq1d m=xym12N12=xy12N12
70 69 oveq2d m=xy1m12N12=1xy12N12
71 66 70 eqeq12d m=xym/LNN/Lm=1m12N12xy/LNN/Lxy=1xy12N12
72 63 71 imbi12d m=xymgcd2 N=1m/LNN/Lm=1m12N12xygcd2 N=1xy/LNN/Lxy=1xy12N12
73 72 imbi2d m=xyφmgcd2 N=1m/LNN/Lm=1m12N12φxygcd2 N=1xy/LNN/Lxy=1xy12N12
74 oveq1 m=Mmgcd2 N=Mgcd2 N
75 74 eqeq1d m=Mmgcd2 N=1Mgcd2 N=1
76 oveq1 m=Mm/LN=M/LN
77 oveq2 m=MN/Lm=N/LM
78 76 77 oveq12d m=Mm/LNN/Lm=M/LNN/LM
79 oveq1 m=Mm1=M1
80 79 oveq1d m=Mm12=M12
81 80 oveq1d m=Mm12N12=M12N12
82 81 oveq2d m=M1m12N12=1M12N12
83 78 82 eqeq12d m=Mm/LNN/Lm=1m12N12M/LNN/LM=1M12N12
84 75 83 imbi12d m=Mmgcd2 N=1m/LNN/Lm=1m12N12Mgcd2 N=1M/LNN/LM=1M12N12
85 84 imbi2d m=Mφmgcd2 N=1m/LNN/Lm=1m12N12φMgcd2 N=1M/LNN/LM=1M12N12
86 1t1e1 11=1
87 neg1cn 1
88 exp0 110=1
89 87 88 ax-mp 10=1
90 86 89 eqtr4i 11=10
91 sq1 12=1
92 91 oveq1i 12/LN=1/LN
93 1z 1
94 ax-1ne0 10
95 93 94 pm3.2i 110
96 3 nnzd φN
97 1gcd N1gcdN=1
98 96 97 syl φ1gcdN=1
99 lgssq 110N1gcdN=112/LN=1
100 95 96 98 99 mp3an2i φ12/LN=1
101 92 100 eqtr3id φ1/LN=1
102 91 oveq2i N/L12=N/L1
103 1nn 1
104 103 a1i φ1
105 gcd1 NNgcd1=1
106 96 105 syl φNgcd1=1
107 lgssq2 N1Ngcd1=1N/L12=1
108 96 104 106 107 syl3anc φN/L12=1
109 102 108 eqtr3id φN/L1=1
110 101 109 oveq12d φ1/LNN/L1=11
111 nnm1nn0 NN10
112 3 111 syl φN10
113 112 nn0cnd φN1
114 113 halfcld φN12
115 114 mul02d φ0N12=0
116 115 oveq2d φ10N12=10
117 90 110 116 3eqtr4a φ1/LNN/L1=10N12
118 117 a1d φmgcd2 N=11/LNN/L1=10N12
119 simprl φmmgcd2 N=1m
120 prmz mm
121 120 ad2antrl φmmgcd2 N=1m
122 11 a1i φmmgcd2 N=12
123 3 adantr φmmgcd2 N=1N
124 123 nnzd φmmgcd2 N=1N
125 zmulcl 2N2 N
126 11 124 125 sylancr φmmgcd2 N=12 N
127 simprr φmmgcd2 N=1mgcd2 N=1
128 dvdsmul1 2N22 N
129 11 124 128 sylancr φmmgcd2 N=122 N
130 rpdvds m22 Nmgcd2 N=122 Nmgcd2=1
131 121 122 126 127 129 130 syl32anc φmmgcd2 N=1mgcd2=1
132 prmrp m2mgcd2=1m2
133 119 14 132 sylancl φmmgcd2 N=1mgcd2=1m2
134 131 133 mpbid φmmgcd2 N=1m2
135 eldifsn m2mm2
136 119 134 135 sylanbrc φmmgcd2 N=1m2
137 prmnn mm
138 137 ad2antrl φmmgcd2 N=1m
139 8 a1i φmmgcd2 N=12
140 rpmulgcd m2Nmgcd2=1mgcd2 N=mgcdN
141 138 139 123 131 140 syl31anc φmmgcd2 N=1mgcd2 N=mgcdN
142 141 127 eqtr3d φmmgcd2 N=1mgcdN=1
143 136 142 jca φmmgcd2 N=1m2mgcdN=1
144 143 6 syldan φmmgcd2 N=1m/LNN/Lm=1m12N12
145 144 exp32 φmmgcd2 N=1m/LNN/Lm=1m12N12
146 145 com12 mφmgcd2 N=1m/LNN/Lm=1m12N12
147 jcab φxgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12φxgcd2 N=1x/LNN/Lx=1x12N12φygcd2 N=1y/LNN/Ly=1y12N12
148 simplrl φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12x2
149 eluz2nn x2x
150 148 149 syl φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12x
151 simplrr φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12y2
152 eluz2nn y2y
153 151 152 syl φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12y
154 150 153 nnmulcld φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12xy
155 n2dvds1 ¬21
156 96 ad2antrr φx2y2xygcd2 N=1N
157 11 156 128 sylancr φx2y2xygcd2 N=122 N
158 eluzelz x2x
159 eluzelz y2y
160 158 159 anim12i x2y2xy
161 160 ad2antlr φx2y2xygcd2 N=1xy
162 zmulcl xyxy
163 161 162 syl φx2y2xygcd2 N=1xy
164 11 156 125 sylancr φx2y2xygcd2 N=12 N
165 dvdsgcd 2xy2 N2xy22 N2xygcd2 N
166 11 163 164 165 mp3an2i φx2y2xygcd2 N=12xy22 N2xygcd2 N
167 157 166 mpan2d φx2y2xygcd2 N=12xy2xygcd2 N
168 simpr φx2y2xygcd2 N=1xygcd2 N=1
169 168 breq2d φx2y2xygcd2 N=12xygcd2 N21
170 167 169 sylibd φx2y2xygcd2 N=12xy21
171 155 170 mtoi φx2y2xygcd2 N=1¬2xy
172 171 adantrr φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12¬2xy
173 3 ad2antrr φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12N
174 4 ad2antrr φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12¬2N
175 dvdsmul2 2NN2 N
176 11 156 175 sylancr φx2y2xygcd2 N=1N2 N
177 rpdvds xyN2 Nxygcd2 N=1N2 NxygcdN=1
178 163 156 164 168 176 177 syl32anc φx2y2xygcd2 N=1xygcdN=1
179 178 adantrr φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12xygcdN=1
180 eqidd φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12xy=xy
181 161 simpld φx2y2xygcd2 N=1x
182 181 164 gcdcomd φx2y2xygcd2 N=1xgcd2 N=2 Ngcdx
183 164 163 gcdcomd φx2y2xygcd2 N=12 Ngcdxy=xygcd2 N
184 183 168 eqtrd φx2y2xygcd2 N=12 Ngcdxy=1
185 dvdsmul1 xyxxy
186 161 185 syl φx2y2xygcd2 N=1xxy
187 rpdvds 2 Nxxy2 Ngcdxy=1xxy2 Ngcdx=1
188 164 181 163 184 186 187 syl32anc φx2y2xygcd2 N=12 Ngcdx=1
189 182 188 eqtrd φx2y2xygcd2 N=1xgcd2 N=1
190 189 adantrr φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12xgcd2 N=1
191 simprrl φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12xgcd2 N=1x/LNN/Lx=1x12N12
192 190 191 mpd φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12x/LNN/Lx=1x12N12
193 161 simprd φx2y2xygcd2 N=1y
194 193 164 gcdcomd φx2y2xygcd2 N=1ygcd2 N=2 Ngcdy
195 dvdsmul2 xyyxy
196 161 195 syl φx2y2xygcd2 N=1yxy
197 rpdvds 2 Nyxy2 Ngcdxy=1yxy2 Ngcdy=1
198 164 193 163 184 196 197 syl32anc φx2y2xygcd2 N=12 Ngcdy=1
199 194 198 eqtrd φx2y2xygcd2 N=1ygcd2 N=1
200 199 adantrr φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12ygcd2 N=1
201 simprrr φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12ygcd2 N=1y/LNN/Ly=1y12N12
202 200 201 mpd φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12y/LNN/Ly=1y12N12
203 154 172 173 174 179 150 153 180 192 202 lgsquad2lem1 φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12xy/LNN/Lxy=1xy12N12
204 203 exp32 φx2y2xygcd2 N=1xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12xy/LNN/Lxy=1xy12N12
205 204 com23 φx2y2xgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12xygcd2 N=1xy/LNN/Lxy=1xy12N12
206 205 expcom x2y2φxgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12xygcd2 N=1xy/LNN/Lxy=1xy12N12
207 206 a2d x2y2φxgcd2 N=1x/LNN/Lx=1x12N12ygcd2 N=1y/LNN/Ly=1y12N12φxygcd2 N=1xy/LNN/Lxy=1xy12N12
208 147 207 biimtrrid x2y2φxgcd2 N=1x/LNN/Lx=1x12N12φygcd2 N=1y/LNN/Ly=1y12N12φxygcd2 N=1xy/LNN/Lxy=1xy12N12
209 37 49 61 73 85 118 146 208 prmind MφMgcd2 N=1M/LNN/LM=1M12N12
210 1 209 mpcom φMgcd2 N=1M/LNN/LM=1M12N12
211 21 210 mpd φM/LNN/LM=1M12N12