Metamath Proof Explorer


Theorem limsupubuzlem

Description: If the limsup is not +oo , then the function is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupubuzlem.j jφ
limsupubuzlem.e _jX
limsupubuzlem.m φM
limsupubuzlem.z Z=M
limsupubuzlem.f φF:Z
limsupubuzlem.y φY
limsupubuzlem.k φK
limsupubuzlem.b φjZKjFjY
limsupubuzlem.n N=ifKMMK
limsupubuzlem.w W=supranjMNFj<
limsupubuzlem.x X=ifWYYW
Assertion limsupubuzlem φxjZFjx

Proof

Step Hyp Ref Expression
1 limsupubuzlem.j jφ
2 limsupubuzlem.e _jX
3 limsupubuzlem.m φM
4 limsupubuzlem.z Z=M
5 limsupubuzlem.f φF:Z
6 limsupubuzlem.y φY
7 limsupubuzlem.k φK
8 limsupubuzlem.b φjZKjFjY
9 limsupubuzlem.n N=ifKMMK
10 limsupubuzlem.w W=supranjMNFj<
11 limsupubuzlem.x X=ifWYYW
12 10 a1i φW=supranjMNFj<
13 ltso <Or
14 13 a1i φ<Or
15 fzfid φMNFin
16 eqid M=M
17 9 a1i φN=ifKMMK
18 ceilcl KK
19 7 18 syl φK
20 3 19 ifcld φifKMMK
21 17 20 eqeltrd φN
22 19 zred φK
23 3 zred φM
24 max2 KMMifKMMK
25 22 23 24 syl2anc φMifKMMK
26 17 eqcomd φifKMMK=N
27 25 26 breqtrd φMN
28 16 3 21 27 eluzd φNM
29 eluzfz2 NMNMN
30 28 29 syl φNMN
31 30 ne0d φMN
32 5 adantr φjMNF:Z
33 3 adantr φjMNM
34 elfzelz jMNj
35 34 adantl φjMNj
36 elfzle1 jMNMj
37 36 adantl φjMNMj
38 16 33 35 37 eluzd φjMNjM
39 38 4 eleqtrrdi φjMNjZ
40 32 39 ffvelcdmd φjMNFj
41 1 14 15 31 40 fisupclrnmpt φsupranjMNFj<
42 12 41 eqeltrd φW
43 6 42 ifcld φifWYYW
44 11 43 eqeltrid φX
45 5 ffvelcdmda φjZFj
46 45 adantr φjZjNFj
47 42 ad2antrr φjZjNW
48 44 ad2antrr φjZjNX
49 simpll φjZjNφ
50 3 ad2antrr φjZjNM
51 21 ad2antrr φjZjNN
52 4 eluzelz2 jZj
53 52 ad2antlr φjZjNj
54 4 eleq2i jZjM
55 54 biimpi jZjM
56 eluzle jMMj
57 55 56 syl jZMj
58 57 ad2antlr φjZjNMj
59 simpr φjZjNjN
60 50 51 53 58 59 elfzd φjZjNjMN
61 1 15 40 fimaxre4 φbjMNFjb
62 1 40 61 suprubrnmpt φjMNFjsupranjMNFj<
63 62 10 breqtrrdi φjMNFjW
64 49 60 63 syl2anc φjZjNFjW
65 max1 WYWifWYYW
66 42 6 65 syl2anc φWifWYYW
67 66 11 breqtrrdi φWX
68 67 ad2antrr φjZjNWX
69 46 47 48 64 68 letrd φjZjNFjX
70 7 ad2antrr φjZ¬jNK
71 uzssre M
72 4 71 eqsstri Z
73 72 sseli jZj
74 73 ad2antlr φjZ¬jNj
75 71 28 sselid φN
76 75 ad2antrr φjZ¬jNN
77 ceilge KKK
78 7 77 syl φKK
79 max1 KMKifKMMK
80 22 23 79 syl2anc φKifKMMK
81 80 26 breqtrd φKN
82 7 22 75 78 81 letrd φKN
83 82 ad2antrr φjZ¬jNKN
84 simpr φjZ¬jN¬jN
85 76 74 ltnled φjZ¬jNN<j¬jN
86 84 85 mpbird φjZ¬jNN<j
87 70 76 74 83 86 lelttrd φjZ¬jNK<j
88 70 74 87 ltled φjZ¬jNKj
89 45 adantr φjZKjFj
90 6 ad2antrr φjZKjY
91 44 ad2antrr φjZKjX
92 simpr φjZKjKj
93 8 r19.21bi φjZKjFjY
94 93 adantr φjZKjKjFjY
95 92 94 mpd φjZKjFjY
96 max2 WYYifWYYW
97 42 6 96 syl2anc φYifWYYW
98 97 11 breqtrrdi φYX
99 98 ad2antrr φjZKjYX
100 89 90 91 95 99 letrd φjZKjFjX
101 88 100 syldan φjZ¬jNFjX
102 69 101 pm2.61dan φjZFjX
103 102 ex φjZFjX
104 1 103 ralrimi φjZFjX
105 nfv xjZFjX
106 nfcv _jx
107 106 2 nfeq jx=X
108 breq2 x=XFjxFjX
109 107 108 ralbid x=XjZFjxjZFjX
110 105 109 rspce XjZFjXxjZFjx
111 44 104 110 syl2anc φxjZFjx