Metamath Proof Explorer


Theorem limsupubuzlem

Description: If the limsup is not +oo , then the function is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupubuzlem.j j φ
limsupubuzlem.e _ j X
limsupubuzlem.m φ M
limsupubuzlem.z Z = M
limsupubuzlem.f φ F : Z
limsupubuzlem.y φ Y
limsupubuzlem.k φ K
limsupubuzlem.b φ j Z K j F j Y
limsupubuzlem.n N = if K M M K
limsupubuzlem.w W = sup ran j M N F j <
limsupubuzlem.x X = if W Y Y W
Assertion limsupubuzlem φ x j Z F j x

Proof

Step Hyp Ref Expression
1 limsupubuzlem.j j φ
2 limsupubuzlem.e _ j X
3 limsupubuzlem.m φ M
4 limsupubuzlem.z Z = M
5 limsupubuzlem.f φ F : Z
6 limsupubuzlem.y φ Y
7 limsupubuzlem.k φ K
8 limsupubuzlem.b φ j Z K j F j Y
9 limsupubuzlem.n N = if K M M K
10 limsupubuzlem.w W = sup ran j M N F j <
11 limsupubuzlem.x X = if W Y Y W
12 10 a1i φ W = sup ran j M N F j <
13 ltso < Or
14 13 a1i φ < Or
15 fzfid φ M N Fin
16 eqid M = M
17 9 a1i φ N = if K M M K
18 ceilcl K K
19 7 18 syl φ K
20 3 19 ifcld φ if K M M K
21 17 20 eqeltrd φ N
22 19 zred φ K
23 3 zred φ M
24 max2 K M M if K M M K
25 22 23 24 syl2anc φ M if K M M K
26 17 eqcomd φ if K M M K = N
27 25 26 breqtrd φ M N
28 16 3 21 27 eluzd φ N M
29 eluzfz2 N M N M N
30 28 29 syl φ N M N
31 30 ne0d φ M N
32 5 adantr φ j M N F : Z
33 3 adantr φ j M N M
34 elfzelz j M N j
35 34 adantl φ j M N j
36 elfzle1 j M N M j
37 36 adantl φ j M N M j
38 16 33 35 37 eluzd φ j M N j M
39 38 4 eleqtrrdi φ j M N j Z
40 32 39 ffvelrnd φ j M N F j
41 1 14 15 31 40 fisupclrnmpt φ sup ran j M N F j <
42 12 41 eqeltrd φ W
43 6 42 ifcld φ if W Y Y W
44 11 43 eqeltrid φ X
45 5 ffvelrnda φ j Z F j
46 45 adantr φ j Z j N F j
47 42 ad2antrr φ j Z j N W
48 44 ad2antrr φ j Z j N X
49 simpll φ j Z j N φ
50 3 ad2antrr φ j Z j N M
51 21 ad2antrr φ j Z j N N
52 4 eluzelz2 j Z j
53 52 ad2antlr φ j Z j N j
54 4 eleq2i j Z j M
55 54 biimpi j Z j M
56 eluzle j M M j
57 55 56 syl j Z M j
58 57 ad2antlr φ j Z j N M j
59 simpr φ j Z j N j N
60 50 51 53 58 59 elfzd φ j Z j N j M N
61 1 15 40 fimaxre4 φ b j M N F j b
62 1 40 61 suprubrnmpt φ j M N F j sup ran j M N F j <
63 62 10 breqtrrdi φ j M N F j W
64 49 60 63 syl2anc φ j Z j N F j W
65 max1 W Y W if W Y Y W
66 42 6 65 syl2anc φ W if W Y Y W
67 66 11 breqtrrdi φ W X
68 67 ad2antrr φ j Z j N W X
69 46 47 48 64 68 letrd φ j Z j N F j X
70 7 ad2antrr φ j Z ¬ j N K
71 uzssre M
72 4 71 eqsstri Z
73 72 sseli j Z j
74 73 ad2antlr φ j Z ¬ j N j
75 71 28 sseldi φ N
76 75 ad2antrr φ j Z ¬ j N N
77 ceilge K K K
78 7 77 syl φ K K
79 max1 K M K if K M M K
80 22 23 79 syl2anc φ K if K M M K
81 80 26 breqtrd φ K N
82 7 22 75 78 81 letrd φ K N
83 82 ad2antrr φ j Z ¬ j N K N
84 simpr φ j Z ¬ j N ¬ j N
85 76 74 ltnled φ j Z ¬ j N N < j ¬ j N
86 84 85 mpbird φ j Z ¬ j N N < j
87 70 76 74 83 86 lelttrd φ j Z ¬ j N K < j
88 70 74 87 ltled φ j Z ¬ j N K j
89 45 adantr φ j Z K j F j
90 6 ad2antrr φ j Z K j Y
91 44 ad2antrr φ j Z K j X
92 simpr φ j Z K j K j
93 8 r19.21bi φ j Z K j F j Y
94 93 adantr φ j Z K j K j F j Y
95 92 94 mpd φ j Z K j F j Y
96 max2 W Y Y if W Y Y W
97 42 6 96 syl2anc φ Y if W Y Y W
98 97 11 breqtrrdi φ Y X
99 98 ad2antrr φ j Z K j Y X
100 89 90 91 95 99 letrd φ j Z K j F j X
101 88 100 syldan φ j Z ¬ j N F j X
102 69 101 pm2.61dan φ j Z F j X
103 102 ex φ j Z F j X
104 1 103 ralrimi φ j Z F j X
105 nfv x j Z F j X
106 nfcv _ j x
107 106 2 nfeq j x = X
108 breq2 x = X F j x F j X
109 107 108 ralbid x = X j Z F j x j Z F j X
110 105 109 rspce X j Z F j X x j Z F j x
111 44 104 110 syl2anc φ x j Z F j x