Metamath Proof Explorer


Theorem linc0scn0

Description: If a set contains the zero element of a module, there is a linear combination being 0 where not all scalars are 0. (Contributed by AV, 13-Apr-2019)

Ref Expression
Hypotheses linc0scn0.b B=BaseM
linc0scn0.s S=ScalarM
linc0scn0.0 0˙=0S
linc0scn0.1 1˙=1S
linc0scn0.z Z=0M
linc0scn0.f F=xVifx=Z1˙0˙
Assertion linc0scn0 MLModV𝒫BFlinCMV=Z

Proof

Step Hyp Ref Expression
1 linc0scn0.b B=BaseM
2 linc0scn0.s S=ScalarM
3 linc0scn0.0 0˙=0S
4 linc0scn0.1 1˙=1S
5 linc0scn0.z Z=0M
6 linc0scn0.f F=xVifx=Z1˙0˙
7 simpl MLModV𝒫BMLMod
8 2 lmodring MLModSRing
9 2 eqcomi ScalarM=S
10 9 fveq2i BaseScalarM=BaseS
11 10 4 ringidcl SRing1˙BaseScalarM
12 10 3 ring0cl SRing0˙BaseScalarM
13 11 12 jca SRing1˙BaseScalarM0˙BaseScalarM
14 8 13 syl MLMod1˙BaseScalarM0˙BaseScalarM
15 14 ad2antrr MLModV𝒫BxV1˙BaseScalarM0˙BaseScalarM
16 ifcl 1˙BaseScalarM0˙BaseScalarMifx=Z1˙0˙BaseScalarM
17 15 16 syl MLModV𝒫BxVifx=Z1˙0˙BaseScalarM
18 17 6 fmptd MLModV𝒫BF:VBaseScalarM
19 fvex BaseScalarMV
20 19 a1i MLModBaseScalarMV
21 elmapg BaseScalarMVV𝒫BFBaseScalarMVF:VBaseScalarM
22 20 21 sylan MLModV𝒫BFBaseScalarMVF:VBaseScalarM
23 18 22 mpbird MLModV𝒫BFBaseScalarMV
24 1 pweqi 𝒫B=𝒫BaseM
25 24 eleq2i V𝒫BV𝒫BaseM
26 25 biimpi V𝒫BV𝒫BaseM
27 26 adantl MLModV𝒫BV𝒫BaseM
28 lincval MLModFBaseScalarMVV𝒫BaseMFlinCMV=MvVFvMv
29 7 23 27 28 syl3anc MLModV𝒫BFlinCMV=MvVFvMv
30 simpr MLModV𝒫BvVvV
31 4 fvexi 1˙V
32 3 fvexi 0˙V
33 31 32 ifex ifv=Z1˙0˙V
34 eqeq1 x=vx=Zv=Z
35 34 ifbid x=vifx=Z1˙0˙=ifv=Z1˙0˙
36 35 6 fvmptg vVifv=Z1˙0˙VFv=ifv=Z1˙0˙
37 30 33 36 sylancl MLModV𝒫BvVFv=ifv=Z1˙0˙
38 37 oveq1d MLModV𝒫BvVFvMv=ifv=Z1˙0˙Mv
39 ovif ifv=Z1˙0˙Mv=ifv=Z1˙Mv0˙Mv
40 39 a1i MLModV𝒫BvVifv=Z1˙0˙Mv=ifv=Z1˙Mv0˙Mv
41 oveq2 v=Z1˙Mv=1˙MZ
42 41 adantl MLModV𝒫BvVv=Z1˙Mv=1˙MZ
43 eqid BaseS=BaseS
44 2 43 4 lmod1cl MLMod1˙BaseS
45 44 ancli MLModMLMod1˙BaseS
46 45 adantr MLModV𝒫BMLMod1˙BaseS
47 46 ad2antrr MLModV𝒫BvVv=ZMLMod1˙BaseS
48 eqid M=M
49 2 48 43 5 lmodvs0 MLMod1˙BaseS1˙MZ=Z
50 47 49 syl MLModV𝒫BvVv=Z1˙MZ=Z
51 42 50 eqtrd MLModV𝒫BvVv=Z1˙Mv=Z
52 7 adantr MLModV𝒫BvVMLMod
53 elelpwi vVV𝒫BvB
54 53 expcom V𝒫BvVvB
55 54 adantl MLModV𝒫BvVvB
56 55 imp MLModV𝒫BvVvB
57 1 2 48 3 5 lmod0vs MLModvB0˙Mv=Z
58 52 56 57 syl2anc MLModV𝒫BvV0˙Mv=Z
59 58 adantr MLModV𝒫BvV¬v=Z0˙Mv=Z
60 51 59 ifeqda MLModV𝒫BvVifv=Z1˙Mv0˙Mv=Z
61 38 40 60 3eqtrd MLModV𝒫BvVFvMv=Z
62 61 mpteq2dva MLModV𝒫BvVFvMv=vVZ
63 62 oveq2d MLModV𝒫BMvVFvMv=MvVZ
64 lmodgrp MLModMGrp
65 64 grpmndd MLModMMnd
66 5 gsumz MMndV𝒫BMvVZ=Z
67 65 66 sylan MLModV𝒫BMvVZ=Z
68 29 63 67 3eqtrd MLModV𝒫BFlinCMV=Z