Description: If a set contains the zero element of a module, there is a linear combination being 0 where not all scalars are 0. (Contributed by AV, 13-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | linc0scn0.b | |
|
linc0scn0.s | |
||
linc0scn0.0 | |
||
linc0scn0.1 | |
||
linc0scn0.z | |
||
linc0scn0.f | |
||
Assertion | linc0scn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | linc0scn0.b | |
|
2 | linc0scn0.s | |
|
3 | linc0scn0.0 | |
|
4 | linc0scn0.1 | |
|
5 | linc0scn0.z | |
|
6 | linc0scn0.f | |
|
7 | simpl | |
|
8 | 2 | lmodring | |
9 | 2 | eqcomi | |
10 | 9 | fveq2i | |
11 | 10 4 | ringidcl | |
12 | 10 3 | ring0cl | |
13 | 11 12 | jca | |
14 | 8 13 | syl | |
15 | 14 | ad2antrr | |
16 | ifcl | |
|
17 | 15 16 | syl | |
18 | 17 6 | fmptd | |
19 | fvex | |
|
20 | 19 | a1i | |
21 | elmapg | |
|
22 | 20 21 | sylan | |
23 | 18 22 | mpbird | |
24 | 1 | pweqi | |
25 | 24 | eleq2i | |
26 | 25 | biimpi | |
27 | 26 | adantl | |
28 | lincval | |
|
29 | 7 23 27 28 | syl3anc | |
30 | simpr | |
|
31 | 4 | fvexi | |
32 | 3 | fvexi | |
33 | 31 32 | ifex | |
34 | eqeq1 | |
|
35 | 34 | ifbid | |
36 | 35 6 | fvmptg | |
37 | 30 33 36 | sylancl | |
38 | 37 | oveq1d | |
39 | ovif | |
|
40 | 39 | a1i | |
41 | oveq2 | |
|
42 | 41 | adantl | |
43 | eqid | |
|
44 | 2 43 4 | lmod1cl | |
45 | 44 | ancli | |
46 | 45 | adantr | |
47 | 46 | ad2antrr | |
48 | eqid | |
|
49 | 2 48 43 5 | lmodvs0 | |
50 | 47 49 | syl | |
51 | 42 50 | eqtrd | |
52 | 7 | adantr | |
53 | elelpwi | |
|
54 | 53 | expcom | |
55 | 54 | adantl | |
56 | 55 | imp | |
57 | 1 2 48 3 5 | lmod0vs | |
58 | 52 56 57 | syl2anc | |
59 | 58 | adantr | |
60 | 51 59 | ifeqda | |
61 | 38 40 60 | 3eqtrd | |
62 | 61 | mpteq2dva | |
63 | 62 | oveq2d | |
64 | lmodgrp | |
|
65 | 64 | grpmndd | |
66 | 5 | gsumz | |
67 | 65 66 | sylan | |
68 | 29 63 67 | 3eqtrd | |