Metamath Proof Explorer


Theorem lindfmm

Description: Linear independence of a family is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses lindfmm.b B=BaseS
lindfmm.c C=BaseT
Assertion lindfmm GSLMHomTG:B1-1CF:IBFLIndFSGFLIndFT

Proof

Step Hyp Ref Expression
1 lindfmm.b B=BaseS
2 lindfmm.c C=BaseT
3 rellindf RelLIndF
4 3 brrelex1i FLIndFSFV
5 simp3 GSLMHomTG:B1-1CF:IBF:IB
6 dmfex FVF:IBIV
7 4 5 6 syl2anr GSLMHomTG:B1-1CF:IBFLIndFSIV
8 7 ex GSLMHomTG:B1-1CF:IBFLIndFSIV
9 3 brrelex1i GFLIndFTGFV
10 f1f G:B1-1CG:BC
11 fco G:BCF:IBGF:IC
12 10 11 sylan G:B1-1CF:IBGF:IC
13 12 3adant1 GSLMHomTG:B1-1CF:IBGF:IC
14 dmfex GFVGF:ICIV
15 9 13 14 syl2anr GSLMHomTG:B1-1CF:IBGFLIndFTIV
16 15 ex GSLMHomTG:B1-1CF:IBGFLIndFTIV
17 eldifi kBaseScalarS0ScalarSkBaseScalarS
18 simpllr GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSG:B1-1C
19 lmhmlmod1 GSLMHomTSLMod
20 19 ad3antrrr GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSSLMod
21 simprr GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSkBaseScalarS
22 simprl GSLMHomTG:B1-1CF:IBIVF:IB
23 simpl xIkBaseScalarSxI
24 ffvelcdm F:IBxIFxB
25 22 23 24 syl2an GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSFxB
26 eqid ScalarS=ScalarS
27 eqid S=S
28 eqid BaseScalarS=BaseScalarS
29 1 26 27 28 lmodvscl SLModkBaseScalarSFxBkSFxB
30 20 21 25 29 syl3anc GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSkSFxB
31 imassrn FIxranF
32 frn F:IBranFB
33 32 adantr F:IBIVranFB
34 31 33 sstrid F:IBIVFIxB
35 34 ad2antlr GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSFIxB
36 eqid LSpanS=LSpanS
37 1 36 lspssv SLModFIxBLSpanSFIxB
38 20 35 37 syl2anc GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSLSpanSFIxB
39 f1elima G:B1-1CkSFxBLSpanSFIxBGkSFxGLSpanSFIxkSFxLSpanSFIx
40 18 30 38 39 syl3anc GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSGkSFxGLSpanSFIxkSFxLSpanSFIx
41 simplll GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSGSLMHomT
42 eqid T=T
43 26 28 1 27 42 lmhmlin GSLMHomTkBaseScalarSFxBGkSFx=kTGFx
44 41 21 25 43 syl3anc GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSGkSFx=kTGFx
45 ffn F:IBFFnI
46 45 ad2antrl GSLMHomTG:B1-1CF:IBIVFFnI
47 fvco2 FFnIxIGFx=GFx
48 46 23 47 syl2an GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSGFx=GFx
49 48 oveq2d GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSkTGFx=kTGFx
50 44 49 eqtr4d GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSGkSFx=kTGFx
51 eqid LSpanT=LSpanT
52 1 36 51 lmhmlsp GSLMHomTFIxBGLSpanSFIx=LSpanTGFIx
53 41 35 52 syl2anc GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSGLSpanSFIx=LSpanTGFIx
54 imaco GFIx=GFIx
55 54 fveq2i LSpanTGFIx=LSpanTGFIx
56 53 55 eqtr4di GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSGLSpanSFIx=LSpanTGFIx
57 50 56 eleq12d GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSGkSFxGLSpanSFIxkTGFxLSpanTGFIx
58 40 57 bitr3d GSLMHomTG:B1-1CF:IBIVxIkBaseScalarSkSFxLSpanSFIxkTGFxLSpanTGFIx
59 58 notbid GSLMHomTG:B1-1CF:IBIVxIkBaseScalarS¬kSFxLSpanSFIx¬kTGFxLSpanTGFIx
60 59 anassrs GSLMHomTG:B1-1CF:IBIVxIkBaseScalarS¬kSFxLSpanSFIx¬kTGFxLSpanTGFIx
61 17 60 sylan2 GSLMHomTG:B1-1CF:IBIVxIkBaseScalarS0ScalarS¬kSFxLSpanSFIx¬kTGFxLSpanTGFIx
62 61 ralbidva GSLMHomTG:B1-1CF:IBIVxIkBaseScalarS0ScalarS¬kSFxLSpanSFIxkBaseScalarS0ScalarS¬kTGFxLSpanTGFIx
63 eqid ScalarT=ScalarT
64 26 63 lmhmsca GSLMHomTScalarT=ScalarS
65 64 fveq2d GSLMHomTBaseScalarT=BaseScalarS
66 64 fveq2d GSLMHomT0ScalarT=0ScalarS
67 66 sneqd GSLMHomT0ScalarT=0ScalarS
68 65 67 difeq12d GSLMHomTBaseScalarT0ScalarT=BaseScalarS0ScalarS
69 68 ad3antrrr GSLMHomTG:B1-1CF:IBIVxIBaseScalarT0ScalarT=BaseScalarS0ScalarS
70 69 raleqdv GSLMHomTG:B1-1CF:IBIVxIkBaseScalarT0ScalarT¬kTGFxLSpanTGFIxkBaseScalarS0ScalarS¬kTGFxLSpanTGFIx
71 62 70 bitr4d GSLMHomTG:B1-1CF:IBIVxIkBaseScalarS0ScalarS¬kSFxLSpanSFIxkBaseScalarT0ScalarT¬kTGFxLSpanTGFIx
72 71 ralbidva GSLMHomTG:B1-1CF:IBIVxIkBaseScalarS0ScalarS¬kSFxLSpanSFIxxIkBaseScalarT0ScalarT¬kTGFxLSpanTGFIx
73 19 ad2antrr GSLMHomTG:B1-1CF:IBIVSLMod
74 simprr GSLMHomTG:B1-1CF:IBIVIV
75 eqid 0ScalarS=0ScalarS
76 1 27 36 26 28 75 islindf2 SLModIVF:IBFLIndFSxIkBaseScalarS0ScalarS¬kSFxLSpanSFIx
77 73 74 22 76 syl3anc GSLMHomTG:B1-1CF:IBIVFLIndFSxIkBaseScalarS0ScalarS¬kSFxLSpanSFIx
78 lmhmlmod2 GSLMHomTTLMod
79 78 ad2antrr GSLMHomTG:B1-1CF:IBIVTLMod
80 12 ad2ant2lr GSLMHomTG:B1-1CF:IBIVGF:IC
81 eqid BaseScalarT=BaseScalarT
82 eqid 0ScalarT=0ScalarT
83 2 42 51 63 81 82 islindf2 TLModIVGF:ICGFLIndFTxIkBaseScalarT0ScalarT¬kTGFxLSpanTGFIx
84 79 74 80 83 syl3anc GSLMHomTG:B1-1CF:IBIVGFLIndFTxIkBaseScalarT0ScalarT¬kTGFxLSpanTGFIx
85 72 77 84 3bitr4d GSLMHomTG:B1-1CF:IBIVFLIndFSGFLIndFT
86 85 exp32 GSLMHomTG:B1-1CF:IBIVFLIndFSGFLIndFT
87 86 3impia GSLMHomTG:B1-1CF:IBIVFLIndFSGFLIndFT
88 8 16 87 pm5.21ndd GSLMHomTG:B1-1CF:IBFLIndFSGFLIndFT