Metamath Proof Explorer


Theorem lss1d

Description: One-dimensional subspace (or zero-dimensional if X is the zero vector). (Contributed by NM, 14-Jan-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lss1d.v V=BaseW
lss1d.f F=ScalarW
lss1d.t ·˙=W
lss1d.k K=BaseF
lss1d.s S=LSubSpW
Assertion lss1d WLModXVv|kKv=k·˙XS

Proof

Step Hyp Ref Expression
1 lss1d.v V=BaseW
2 lss1d.f F=ScalarW
3 lss1d.t ·˙=W
4 lss1d.k K=BaseF
5 lss1d.s S=LSubSpW
6 2 a1i WLModXVF=ScalarW
7 4 a1i WLModXVK=BaseF
8 1 a1i WLModXVV=BaseW
9 eqidd WLModXV+W=+W
10 3 a1i WLModXV·˙=W
11 5 a1i WLModXVS=LSubSpW
12 1 2 3 4 lmodvscl WLModkKXVk·˙XV
13 12 3expa WLModkKXVk·˙XV
14 13 an32s WLModXVkKk·˙XV
15 eleq1a k·˙XVv=k·˙XvV
16 14 15 syl WLModXVkKv=k·˙XvV
17 16 rexlimdva WLModXVkKv=k·˙XvV
18 17 abssdv WLModXVv|kKv=k·˙XV
19 eqid 0F=0F
20 2 4 19 lmod0cl WLMod0FK
21 20 adantr WLModXV0FK
22 nfcv _k0F
23 nfre1 kkKv=k·˙X
24 23 nfab _kv|kKv=k·˙X
25 nfcv _k
26 24 25 nfne kv|kKv=k·˙X
27 biidd k=0Fv|kKv=k·˙Xv|kKv=k·˙X
28 ovex k·˙XV
29 28 elabrex kKk·˙Xv|kKv=k·˙X
30 29 ne0d kKv|kKv=k·˙X
31 22 26 27 30 vtoclgaf 0FKv|kKv=k·˙X
32 21 31 syl WLModXVv|kKv=k·˙X
33 vex aV
34 eqeq1 v=av=k·˙Xa=k·˙X
35 34 rexbidv v=akKv=k·˙XkKa=k·˙X
36 33 35 elab av|kKv=k·˙XkKa=k·˙X
37 oveq1 k=yk·˙X=y·˙X
38 37 eqeq2d k=ya=k·˙Xa=y·˙X
39 38 cbvrexvw kKa=k·˙XyKa=y·˙X
40 36 39 bitri av|kKv=k·˙XyKa=y·˙X
41 vex bV
42 eqeq1 v=bv=k·˙Xb=k·˙X
43 42 rexbidv v=bkKv=k·˙XkKb=k·˙X
44 41 43 elab bv|kKv=k·˙XkKb=k·˙X
45 oveq1 k=zk·˙X=z·˙X
46 45 eqeq2d k=zb=k·˙Xb=z·˙X
47 46 cbvrexvw kKb=k·˙XzKb=z·˙X
48 44 47 bitri bv|kKv=k·˙XzKb=z·˙X
49 40 48 anbi12i av|kKv=k·˙Xbv|kKv=k·˙XyKa=y·˙XzKb=z·˙X
50 reeanv yKzKa=y·˙Xb=z·˙XyKa=y·˙XzKb=z·˙X
51 49 50 bitr4i av|kKv=k·˙Xbv|kKv=k·˙XyKzKa=y·˙Xb=z·˙X
52 simpll WLModXVyKzKxKWLMod
53 simprr WLModXVyKzKxKxK
54 simprll WLModXVyKzKxKyK
55 eqid F=F
56 2 4 55 lmodmcl WLModxKyKxFyK
57 52 53 54 56 syl3anc WLModXVyKzKxKxFyK
58 simprlr WLModXVyKzKxKzK
59 eqid +F=+F
60 2 4 59 lmodacl WLModxFyKzKxFy+FzK
61 52 57 58 60 syl3anc WLModXVyKzKxKxFy+FzK
62 simplr WLModXVyKzKxKXV
63 eqid +W=+W
64 1 63 2 3 4 59 lmodvsdir WLModxFyKzKXVxFy+Fz·˙X=xFy·˙X+Wz·˙X
65 52 57 58 62 64 syl13anc WLModXVyKzKxKxFy+Fz·˙X=xFy·˙X+Wz·˙X
66 1 2 3 4 55 lmodvsass WLModxKyKXVxFy·˙X=x·˙y·˙X
67 52 53 54 62 66 syl13anc WLModXVyKzKxKxFy·˙X=x·˙y·˙X
68 67 oveq1d WLModXVyKzKxKxFy·˙X+Wz·˙X=x·˙y·˙X+Wz·˙X
69 65 68 eqtr2d WLModXVyKzKxKx·˙y·˙X+Wz·˙X=xFy+Fz·˙X
70 oveq1 k=xFy+Fzk·˙X=xFy+Fz·˙X
71 70 rspceeqv xFy+FzKx·˙y·˙X+Wz·˙X=xFy+Fz·˙XkKx·˙y·˙X+Wz·˙X=k·˙X
72 61 69 71 syl2anc WLModXVyKzKxKkKx·˙y·˙X+Wz·˙X=k·˙X
73 oveq2 a=y·˙Xx·˙a=x·˙y·˙X
74 oveq12 x·˙a=x·˙y·˙Xb=z·˙Xx·˙a+Wb=x·˙y·˙X+Wz·˙X
75 73 74 sylan a=y·˙Xb=z·˙Xx·˙a+Wb=x·˙y·˙X+Wz·˙X
76 75 eqeq1d a=y·˙Xb=z·˙Xx·˙a+Wb=k·˙Xx·˙y·˙X+Wz·˙X=k·˙X
77 76 rexbidv a=y·˙Xb=z·˙XkKx·˙a+Wb=k·˙XkKx·˙y·˙X+Wz·˙X=k·˙X
78 72 77 syl5ibrcom WLModXVyKzKxKa=y·˙Xb=z·˙XkKx·˙a+Wb=k·˙X
79 78 expr WLModXVyKzKxKa=y·˙Xb=z·˙XkKx·˙a+Wb=k·˙X
80 79 com23 WLModXVyKzKa=y·˙Xb=z·˙XxKkKx·˙a+Wb=k·˙X
81 80 rexlimdvva WLModXVyKzKa=y·˙Xb=z·˙XxKkKx·˙a+Wb=k·˙X
82 51 81 biimtrid WLModXVav|kKv=k·˙Xbv|kKv=k·˙XxKkKx·˙a+Wb=k·˙X
83 82 expcomd WLModXVbv|kKv=k·˙Xav|kKv=k·˙XxKkKx·˙a+Wb=k·˙X
84 83 com24 WLModXVxKav|kKv=k·˙Xbv|kKv=k·˙XkKx·˙a+Wb=k·˙X
85 84 3imp2 WLModXVxKav|kKv=k·˙Xbv|kKv=k·˙XkKx·˙a+Wb=k·˙X
86 ovex x·˙a+WbV
87 eqeq1 v=x·˙a+Wbv=k·˙Xx·˙a+Wb=k·˙X
88 87 rexbidv v=x·˙a+WbkKv=k·˙XkKx·˙a+Wb=k·˙X
89 86 88 elab x·˙a+Wbv|kKv=k·˙XkKx·˙a+Wb=k·˙X
90 85 89 sylibr WLModXVxKav|kKv=k·˙Xbv|kKv=k·˙Xx·˙a+Wbv|kKv=k·˙X
91 6 7 8 9 10 11 18 32 90 islssd WLModXVv|kKv=k·˙XS