Metamath Proof Explorer


Theorem mamuvs2

Description: Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 22-Jul-2019)

Ref Expression
Hypotheses mamuvs2.r φRCRing
mamuvs2.b B=BaseR
mamuvs2.t ·˙=R
mamuvs2.f F=RmaMulMNO
mamuvs2.m φMFin
mamuvs2.n φNFin
mamuvs2.o φOFin
mamuvs2.x φXBM×N
mamuvs2.y φYB
mamuvs2.z φZBN×O
Assertion mamuvs2 φXFN×O×Y·˙fZ=M×O×Y·˙fXFZ

Proof

Step Hyp Ref Expression
1 mamuvs2.r φRCRing
2 mamuvs2.b B=BaseR
3 mamuvs2.t ·˙=R
4 mamuvs2.f F=RmaMulMNO
5 mamuvs2.m φMFin
6 mamuvs2.n φNFin
7 mamuvs2.o φOFin
8 mamuvs2.x φXBM×N
9 mamuvs2.y φYB
10 mamuvs2.z φZBN×O
11 df-ov jN×O×Y·˙fZk=N×O×Y·˙fZjk
12 simpr φiMkOjNjN
13 simplrr φiMkOjNkO
14 opelxpi jNkOjkN×O
15 12 13 14 syl2anc φiMkOjNjkN×O
16 xpfi NFinOFinN×OFin
17 6 7 16 syl2anc φN×OFin
18 17 ad2antrr φiMkOjNN×OFin
19 9 ad2antrr φiMkOjNYB
20 elmapi ZBN×OZ:N×OB
21 ffn Z:N×OBZFnN×O
22 10 20 21 3syl φZFnN×O
23 22 ad2antrr φiMkOjNZFnN×O
24 df-ov jZk=Zjk
25 24 eqcomi Zjk=jZk
26 25 a1i φiMkOjNjkN×OZjk=jZk
27 18 19 23 26 ofc1 φiMkOjNjkN×ON×O×Y·˙fZjk=Y·˙jZk
28 15 27 mpdan φiMkOjNN×O×Y·˙fZjk=Y·˙jZk
29 11 28 eqtrid φiMkOjNjN×O×Y·˙fZk=Y·˙jZk
30 29 oveq2d φiMkOjNiXj·˙jN×O×Y·˙fZk=iXj·˙Y·˙jZk
31 eqid mulGrpR=mulGrpR
32 31 crngmgp RCRingmulGrpRCMnd
33 1 32 syl φmulGrpRCMnd
34 33 ad2antrr φiMkOjNmulGrpRCMnd
35 elmapi XBM×NX:M×NB
36 8 35 syl φX:M×NB
37 36 ad2antrr φiMkOjNX:M×NB
38 simplrl φiMkOjNiM
39 37 38 12 fovcdmd φiMkOjNiXjB
40 10 20 syl φZ:N×OB
41 40 ad2antrr φiMkOjNZ:N×OB
42 41 12 13 fovcdmd φiMkOjNjZkB
43 31 2 mgpbas B=BasemulGrpR
44 31 3 mgpplusg ·˙=+mulGrpR
45 43 44 cmn12 mulGrpRCMndiXjBYBjZkBiXj·˙Y·˙jZk=Y·˙iXj·˙jZk
46 34 39 19 42 45 syl13anc φiMkOjNiXj·˙Y·˙jZk=Y·˙iXj·˙jZk
47 30 46 eqtrd φiMkOjNiXj·˙jN×O×Y·˙fZk=Y·˙iXj·˙jZk
48 47 mpteq2dva φiMkOjNiXj·˙jN×O×Y·˙fZk=jNY·˙iXj·˙jZk
49 48 oveq2d φiMkORjNiXj·˙jN×O×Y·˙fZk=RjNY·˙iXj·˙jZk
50 eqid 0R=0R
51 crngring RCRingRRing
52 1 51 syl φRRing
53 52 adantr φiMkORRing
54 6 adantr φiMkONFin
55 9 adantr φiMkOYB
56 52 ad2antrr φiMkOjNRRing
57 2 3 56 39 42 ringcld φiMkOjNiXj·˙jZkB
58 eqid jNiXj·˙jZk=jNiXj·˙jZk
59 ovexd φiMkOjNiXj·˙jZkV
60 fvexd φiMkO0RV
61 58 54 59 60 fsuppmptdm φiMkOfinSupp0RjNiXj·˙jZk
62 2 50 3 53 54 55 57 61 gsummulc2 φiMkORjNY·˙iXj·˙jZk=Y·˙RjNiXj·˙jZk
63 49 62 eqtrd φiMkORjNiXj·˙jN×O×Y·˙fZk=Y·˙RjNiXj·˙jZk
64 1 adantr φiMkORCRing
65 5 adantr φiMkOMFin
66 7 adantr φiMkOOFin
67 8 adantr φiMkOXBM×N
68 fconst6g YBN×O×Y:N×OB
69 9 68 syl φN×O×Y:N×OB
70 2 fvexi BV
71 elmapg BVN×OFinN×O×YBN×ON×O×Y:N×OB
72 70 17 71 sylancr φN×O×YBN×ON×O×Y:N×OB
73 69 72 mpbird φN×O×YBN×O
74 2 3 ringvcl RRingN×O×YBN×OZBN×ON×O×Y·˙fZBN×O
75 52 73 10 74 syl3anc φN×O×Y·˙fZBN×O
76 75 adantr φiMkON×O×Y·˙fZBN×O
77 simprl φiMkOiM
78 simprr φiMkOkO
79 4 2 3 64 65 54 66 67 76 77 78 mamufv φiMkOiXFN×O×Y·˙fZk=RjNiXj·˙jN×O×Y·˙fZk
80 df-ov iM×O×Y·˙fXFZk=M×O×Y·˙fXFZik
81 opelxpi iMkOikM×O
82 81 adantl φiMkOikM×O
83 xpfi MFinOFinM×OFin
84 5 7 83 syl2anc φM×OFin
85 84 adantr φiMkOM×OFin
86 2 52 4 5 6 7 8 10 mamucl φXFZBM×O
87 elmapi XFZBM×OXFZ:M×OB
88 ffn XFZ:M×OBXFZFnM×O
89 86 87 88 3syl φXFZFnM×O
90 89 adantr φiMkOXFZFnM×O
91 df-ov iXFZk=XFZik
92 10 adantr φiMkOZBN×O
93 4 2 3 64 65 54 66 67 92 77 78 mamufv φiMkOiXFZk=RjNiXj·˙jZk
94 91 93 eqtr3id φiMkOXFZik=RjNiXj·˙jZk
95 94 adantr φiMkOikM×OXFZik=RjNiXj·˙jZk
96 85 55 90 95 ofc1 φiMkOikM×OM×O×Y·˙fXFZik=Y·˙RjNiXj·˙jZk
97 82 96 mpdan φiMkOM×O×Y·˙fXFZik=Y·˙RjNiXj·˙jZk
98 80 97 eqtrid φiMkOiM×O×Y·˙fXFZk=Y·˙RjNiXj·˙jZk
99 63 79 98 3eqtr4d φiMkOiXFN×O×Y·˙fZk=iM×O×Y·˙fXFZk
100 99 ralrimivva φiMkOiXFN×O×Y·˙fZk=iM×O×Y·˙fXFZk
101 2 52 4 5 6 7 8 75 mamucl φXFN×O×Y·˙fZBM×O
102 elmapi XFN×O×Y·˙fZBM×OXFN×O×Y·˙fZ:M×OB
103 ffn XFN×O×Y·˙fZ:M×OBXFN×O×Y·˙fZFnM×O
104 101 102 103 3syl φXFN×O×Y·˙fZFnM×O
105 fconst6g YBM×O×Y:M×OB
106 9 105 syl φM×O×Y:M×OB
107 elmapg BVM×OFinM×O×YBM×OM×O×Y:M×OB
108 70 84 107 sylancr φM×O×YBM×OM×O×Y:M×OB
109 106 108 mpbird φM×O×YBM×O
110 2 3 ringvcl RRingM×O×YBM×OXFZBM×OM×O×Y·˙fXFZBM×O
111 52 109 86 110 syl3anc φM×O×Y·˙fXFZBM×O
112 elmapi M×O×Y·˙fXFZBM×OM×O×Y·˙fXFZ:M×OB
113 ffn M×O×Y·˙fXFZ:M×OBM×O×Y·˙fXFZFnM×O
114 111 112 113 3syl φM×O×Y·˙fXFZFnM×O
115 eqfnov2 XFN×O×Y·˙fZFnM×OM×O×Y·˙fXFZFnM×OXFN×O×Y·˙fZ=M×O×Y·˙fXFZiMkOiXFN×O×Y·˙fZk=iM×O×Y·˙fXFZk
116 104 114 115 syl2anc φXFN×O×Y·˙fZ=M×O×Y·˙fXFZiMkOiXFN×O×Y·˙fZk=iM×O×Y·˙fXFZk
117 100 116 mpbird φXFN×O×Y·˙fZ=M×O×Y·˙fXFZ