Metamath Proof Explorer


Theorem matinv

Description: The inverse of a matrix is the adjunct of the matrix multiplied with the inverse of the determinant of the matrix if the determinant is a unit in the underlying ring. Proposition 4.16 in Lang p. 518. (Contributed by Stefan O'Rear, 17-Jul-2018)

Ref Expression
Hypotheses matinv.a A=NMatR
matinv.j J=NmaAdjuR
matinv.d D=NmaDetR
matinv.b B=BaseA
matinv.u U=UnitA
matinv.v V=UnitR
matinv.h H=invrR
matinv.i I=invrA
matinv.t ˙=A
Assertion matinv RCRingMBDMVMUIM=HDM˙JM

Proof

Step Hyp Ref Expression
1 matinv.a A=NMatR
2 matinv.j J=NmaAdjuR
3 matinv.d D=NmaDetR
4 matinv.b B=BaseA
5 matinv.u U=UnitA
6 matinv.v V=UnitR
7 matinv.h H=invrR
8 matinv.i I=invrA
9 matinv.t ˙=A
10 eqid A=A
11 eqid 1A=1A
12 1 4 matrcl MBNFinRV
13 12 simpld MBNFin
14 13 3ad2ant2 RCRingMBDMVNFin
15 simp1 RCRingMBDMVRCRing
16 1 matassa NFinRCRingAAssAlg
17 14 15 16 syl2anc RCRingMBDMVAAssAlg
18 assaring AAssAlgARing
19 17 18 syl RCRingMBDMVARing
20 simp2 RCRingMBDMVMB
21 assalmod AAssAlgALMod
22 17 21 syl RCRingMBDMVALMod
23 crngring RCRingRRing
24 23 3ad2ant1 RCRingMBDMVRRing
25 simp3 RCRingMBDMVDMV
26 eqid BaseR=BaseR
27 6 7 26 ringinvcl RRingDMVHDMBaseR
28 24 25 27 syl2anc RCRingMBDMVHDMBaseR
29 1 matsca2 NFinRCRingR=ScalarA
30 14 15 29 syl2anc RCRingMBDMVR=ScalarA
31 30 fveq2d RCRingMBDMVBaseR=BaseScalarA
32 28 31 eleqtrd RCRingMBDMVHDMBaseScalarA
33 1 2 4 maduf RCRingJ:BB
34 33 3ad2ant1 RCRingMBDMVJ:BB
35 34 20 ffvelcdmd RCRingMBDMVJMB
36 eqid ScalarA=ScalarA
37 eqid BaseScalarA=BaseScalarA
38 4 36 9 37 lmodvscl ALModHDMBaseScalarAJMBHDM˙JMB
39 22 32 35 38 syl3anc RCRingMBDMVHDM˙JMB
40 4 36 37 9 10 assaassr AAssAlgHDMBaseScalarAMBJMBMAHDM˙JM=HDM˙MAJM
41 17 32 20 35 40 syl13anc RCRingMBDMVMAHDM˙JM=HDM˙MAJM
42 1 4 2 3 11 10 9 madurid MBRCRingMAJM=DM˙1A
43 20 15 42 syl2anc RCRingMBDMVMAJM=DM˙1A
44 43 oveq2d RCRingMBDMVHDM˙MAJM=HDM˙DM˙1A
45 eqid R=R
46 eqid 1R=1R
47 6 7 45 46 unitlinv RRingDMVHDMRDM=1R
48 24 25 47 syl2anc RCRingMBDMVHDMRDM=1R
49 30 fveq2d RCRingMBDMVR=ScalarA
50 49 oveqd RCRingMBDMVHDMRDM=HDMScalarADM
51 30 fveq2d RCRingMBDMV1R=1ScalarA
52 48 50 51 3eqtr3d RCRingMBDMVHDMScalarADM=1ScalarA
53 52 oveq1d RCRingMBDMVHDMScalarADM˙1A=1ScalarA˙1A
54 26 6 unitcl DMVDMBaseR
55 54 3ad2ant3 RCRingMBDMVDMBaseR
56 55 31 eleqtrd RCRingMBDMVDMBaseScalarA
57 4 11 ringidcl ARing1AB
58 19 57 syl RCRingMBDMV1AB
59 eqid ScalarA=ScalarA
60 4 36 9 37 59 lmodvsass ALModHDMBaseScalarADMBaseScalarA1ABHDMScalarADM˙1A=HDM˙DM˙1A
61 22 32 56 58 60 syl13anc RCRingMBDMVHDMScalarADM˙1A=HDM˙DM˙1A
62 eqid 1ScalarA=1ScalarA
63 4 36 9 62 lmodvs1 ALMod1AB1ScalarA˙1A=1A
64 22 58 63 syl2anc RCRingMBDMV1ScalarA˙1A=1A
65 53 61 64 3eqtr3d RCRingMBDMVHDM˙DM˙1A=1A
66 41 44 65 3eqtrd RCRingMBDMVMAHDM˙JM=1A
67 4 36 37 9 10 assaass AAssAlgHDMBaseScalarAJMBMBHDM˙JMAM=HDM˙JMAM
68 17 32 35 20 67 syl13anc RCRingMBDMVHDM˙JMAM=HDM˙JMAM
69 1 4 2 3 11 10 9 madulid MBRCRingJMAM=DM˙1A
70 20 15 69 syl2anc RCRingMBDMVJMAM=DM˙1A
71 70 oveq2d RCRingMBDMVHDM˙JMAM=HDM˙DM˙1A
72 68 71 65 3eqtrd RCRingMBDMVHDM˙JMAM=1A
73 4 10 11 5 8 19 20 39 66 72 invrvald RCRingMBDMVMUIM=HDM˙JM