Metamath Proof Explorer


Theorem mbfposadd

Description: If the sum of two measurable functions is measurable, the sum of their nonnegative parts is measurable. (Contributed by Brendan Leahy, 2-Apr-2018)

Ref Expression
Hypotheses mbfposadd.1 φxABMblFn
mbfposadd.2 φxAB
mbfposadd.3 φxACMblFn
mbfposadd.4 φxAC
mbfposadd.5 φxAB+CMblFn
Assertion mbfposadd φxAif0BB0+if0CC0MblFn

Proof

Step Hyp Ref Expression
1 mbfposadd.1 φxABMblFn
2 mbfposadd.2 φxAB
3 mbfposadd.3 φxACMblFn
4 mbfposadd.4 φxAC
5 mbfposadd.5 φxAB+CMblFn
6 0re 0
7 ifcl B0if0BB0
8 2 6 7 sylancl φxAif0BB0
9 ifcl C0if0CC0
10 4 6 9 sylancl φxAif0CC0
11 8 10 readdcld φxAif0BB0+if0CC0
12 11 fmpttd φxAif0BB0+if0CC0:A
13 ssrab2 xA|0CA
14 fssres xAif0BB0+if0CC0:AxA|0CAxAif0BB0+if0CC0xA|0C:xA|0C
15 12 13 14 sylancl φxAif0BB0+if0CC0xA|0C:xA|0C
16 inss2 xA|0BxA|0CxA|0C
17 resabs1 xA|0BxA|0CxA|0CxAif0BB0+if0CC0xA|0CxA|0BxA|0C=xAif0BB0+if0CC0xA|0BxA|0C
18 16 17 ax-mp xAif0BB0+if0CC0xA|0CxA|0BxA|0C=xAif0BB0+if0CC0xA|0BxA|0C
19 elin xxA|0BxA|0CxxA|0BxxA|0C
20 rabid xxA|0BxA0B
21 rabid xxA|0CxA0C
22 20 21 anbi12i xxA|0BxxA|0CxA0BxA0C
23 19 22 bitri xxA|0BxA|0CxA0BxA0C
24 iftrue 0Bif0BB0=B
25 iftrue 0Cif0CC0=C
26 24 25 oveqan12d 0B0Cif0BB0+if0CC0=B+C
27 26 ad2ant2l xA0BxA0Cif0BB0+if0CC0=B+C
28 23 27 sylbi xxA|0BxA|0Cif0BB0+if0CC0=B+C
29 28 mpteq2ia xxA|0BxA|0Cif0BB0+if0CC0=xxA|0BxA|0CB+C
30 inss1 xA|0BxA|0CxA|0B
31 ssrab2 xA|0BA
32 30 31 sstri xA|0BxA|0CA
33 resmpt xA|0BxA|0CAyAy/xif0BB0+if0CC0xA|0BxA|0C=yxA|0BxA|0Cy/xif0BB0+if0CC0
34 nfcv _yif0BB0+if0CC0
35 nfcsb1v _xy/xif0BB0+if0CC0
36 csbeq1a x=yif0BB0+if0CC0=y/xif0BB0+if0CC0
37 34 35 36 cbvmpt xAif0BB0+if0CC0=yAy/xif0BB0+if0CC0
38 37 reseq1i xAif0BB0+if0CC0xA|0BxA|0C=yAy/xif0BB0+if0CC0xA|0BxA|0C
39 nfv yxxA|0BxA|0Cz=if0BB0+if0CC0
40 nfrab1 _xxA|0B
41 nfrab1 _xxA|0C
42 40 41 nfin _xxA|0BxA|0C
43 42 nfcri xyxA|0BxA|0C
44 35 nfeq2 xz=y/xif0BB0+if0CC0
45 43 44 nfan xyxA|0BxA|0Cz=y/xif0BB0+if0CC0
46 eleq1w x=yxxA|0BxA|0CyxA|0BxA|0C
47 36 eqeq2d x=yz=if0BB0+if0CC0z=y/xif0BB0+if0CC0
48 46 47 anbi12d x=yxxA|0BxA|0Cz=if0BB0+if0CC0yxA|0BxA|0Cz=y/xif0BB0+if0CC0
49 39 45 48 cbvopab1 xz|xxA|0BxA|0Cz=if0BB0+if0CC0=yz|yxA|0BxA|0Cz=y/xif0BB0+if0CC0
50 df-mpt xxA|0BxA|0Cif0BB0+if0CC0=xz|xxA|0BxA|0Cz=if0BB0+if0CC0
51 df-mpt yxA|0BxA|0Cy/xif0BB0+if0CC0=yz|yxA|0BxA|0Cz=y/xif0BB0+if0CC0
52 49 50 51 3eqtr4i xxA|0BxA|0Cif0BB0+if0CC0=yxA|0BxA|0Cy/xif0BB0+if0CC0
53 33 38 52 3eqtr4g xA|0BxA|0CAxAif0BB0+if0CC0xA|0BxA|0C=xxA|0BxA|0Cif0BB0+if0CC0
54 32 53 ax-mp xAif0BB0+if0CC0xA|0BxA|0C=xxA|0BxA|0Cif0BB0+if0CC0
55 resmpt xA|0BxA|0CAyAy/xB+CxA|0BxA|0C=yxA|0BxA|0Cy/xB+C
56 nfcv _yB+C
57 nfcsb1v _xy/xB+C
58 csbeq1a x=yB+C=y/xB+C
59 56 57 58 cbvmpt xAB+C=yAy/xB+C
60 59 reseq1i xAB+CxA|0BxA|0C=yAy/xB+CxA|0BxA|0C
61 nfv yxxA|0BxA|0Cz=B+C
62 57 nfeq2 xz=y/xB+C
63 43 62 nfan xyxA|0BxA|0Cz=y/xB+C
64 58 eqeq2d x=yz=B+Cz=y/xB+C
65 46 64 anbi12d x=yxxA|0BxA|0Cz=B+CyxA|0BxA|0Cz=y/xB+C
66 61 63 65 cbvopab1 xz|xxA|0BxA|0Cz=B+C=yz|yxA|0BxA|0Cz=y/xB+C
67 df-mpt xxA|0BxA|0CB+C=xz|xxA|0BxA|0Cz=B+C
68 df-mpt yxA|0BxA|0Cy/xB+C=yz|yxA|0BxA|0Cz=y/xB+C
69 66 67 68 3eqtr4i xxA|0BxA|0CB+C=yxA|0BxA|0Cy/xB+C
70 55 60 69 3eqtr4g xA|0BxA|0CAxAB+CxA|0BxA|0C=xxA|0BxA|0CB+C
71 32 70 ax-mp xAB+CxA|0BxA|0C=xxA|0BxA|0CB+C
72 29 54 71 3eqtr4i xAif0BB0+if0CC0xA|0BxA|0C=xAB+CxA|0BxA|0C
73 18 72 eqtri xAif0BB0+if0CC0xA|0CxA|0BxA|0C=xAB+CxA|0BxA|0C
74 2 biantrurd φxA0BB0B
75 elrege0 B0+∞B0B
76 74 75 bitr4di φxA0BB0+∞
77 76 rabbidva φxA|0B=xA|B0+∞
78 0xr 0*
79 pnfxr +∞*
80 0ltpnf 0<+∞
81 snunioo 0*+∞*0<+∞00+∞=0+∞
82 78 79 80 81 mp3an 00+∞=0+∞
83 82 imaeq2i xAB-100+∞=xAB-10+∞
84 imaundi xAB-100+∞=xAB-10xAB-10+∞
85 eqid xAB=xAB
86 85 mptpreima xAB-10+∞=xA|B0+∞
87 83 84 86 3eqtr3ri xA|B0+∞=xAB-10xAB-10+∞
88 77 87 eqtrdi φxA|0B=xAB-10xAB-10+∞
89 2 fmpttd φxAB:A
90 mbfimasn xABMblFnxAB:A0xAB-10domvol
91 6 90 mp3an3 xABMblFnxAB:AxAB-10domvol
92 mbfima xABMblFnxAB:AxAB-10+∞domvol
93 unmbl xAB-10domvolxAB-10+∞domvolxAB-10xAB-10+∞domvol
94 91 92 93 syl2anc xABMblFnxAB:AxAB-10xAB-10+∞domvol
95 1 89 94 syl2anc φxAB-10xAB-10+∞domvol
96 88 95 eqeltrd φxA|0Bdomvol
97 4 biantrurd φxA0CC0C
98 elrege0 C0+∞C0C
99 97 98 bitr4di φxA0CC0+∞
100 99 rabbidva φxA|0C=xA|C0+∞
101 82 imaeq2i xAC-100+∞=xAC-10+∞
102 imaundi xAC-100+∞=xAC-10xAC-10+∞
103 eqid xAC=xAC
104 103 mptpreima xAC-10+∞=xA|C0+∞
105 101 102 104 3eqtr3ri xA|C0+∞=xAC-10xAC-10+∞
106 100 105 eqtrdi φxA|0C=xAC-10xAC-10+∞
107 4 fmpttd φxAC:A
108 mbfimasn xACMblFnxAC:A0xAC-10domvol
109 6 108 mp3an3 xACMblFnxAC:AxAC-10domvol
110 mbfima xACMblFnxAC:AxAC-10+∞domvol
111 unmbl xAC-10domvolxAC-10+∞domvolxAC-10xAC-10+∞domvol
112 109 110 111 syl2anc xACMblFnxAC:AxAC-10xAC-10+∞domvol
113 3 107 112 syl2anc φxAC-10xAC-10+∞domvol
114 106 113 eqeltrd φxA|0Cdomvol
115 inmbl xA|0BdomvolxA|0CdomvolxA|0BxA|0Cdomvol
116 96 114 115 syl2anc φxA|0BxA|0Cdomvol
117 mbfres xAB+CMblFnxA|0BxA|0CdomvolxAB+CxA|0BxA|0CMblFn
118 5 116 117 syl2anc φxAB+CxA|0BxA|0CMblFn
119 73 118 eqeltrid φxAif0BB0+if0CC0xA|0CxA|0BxA|0CMblFn
120 inss2 xA|¬0BxA|0CxA|0C
121 resabs1 xA|¬0BxA|0CxA|0CxAif0BB0+if0CC0xA|0CxA|¬0BxA|0C=xAif0BB0+if0CC0xA|¬0BxA|0C
122 120 121 ax-mp xAif0BB0+if0CC0xA|0CxA|¬0BxA|0C=xAif0BB0+if0CC0xA|¬0BxA|0C
123 rabid xxA|¬0BxA¬0B
124 123 21 anbi12i xxA|¬0BxxA|0CxA¬0BxA0C
125 elin xxA|¬0BxA|0CxxA|¬0BxxA|0C
126 anandi xA¬0B0CxA¬0BxA0C
127 124 125 126 3bitr4i xxA|¬0BxA|0CxA¬0B0C
128 iffalse ¬0Bif0BB0=0
129 128 25 oveqan12d ¬0B0Cif0BB0+if0CC0=0+C
130 129 ad2antll φxA¬0B0Cif0BB0+if0CC0=0+C
131 4 recnd φxAC
132 131 addlidd φxA0+C=C
133 132 adantrr φxA¬0B0C0+C=C
134 130 133 eqtrd φxA¬0B0Cif0BB0+if0CC0=C
135 127 134 sylan2b φxxA|¬0BxA|0Cif0BB0+if0CC0=C
136 135 mpteq2dva φxxA|¬0BxA|0Cif0BB0+if0CC0=xxA|¬0BxA|0CC
137 inss1 xA|¬0BxA|0CxA|¬0B
138 ssrab2 xA|¬0BA
139 137 138 sstri xA|¬0BxA|0CA
140 resmpt xA|¬0BxA|0CAyAy/xif0BB0+if0CC0xA|¬0BxA|0C=yxA|¬0BxA|0Cy/xif0BB0+if0CC0
141 37 reseq1i xAif0BB0+if0CC0xA|¬0BxA|0C=yAy/xif0BB0+if0CC0xA|¬0BxA|0C
142 nfv yxxA|¬0BxA|0Cz=if0BB0+if0CC0
143 nfrab1 _xxA|¬0B
144 143 41 nfin _xxA|¬0BxA|0C
145 144 nfcri xyxA|¬0BxA|0C
146 145 44 nfan xyxA|¬0BxA|0Cz=y/xif0BB0+if0CC0
147 eleq1w x=yxxA|¬0BxA|0CyxA|¬0BxA|0C
148 147 47 anbi12d x=yxxA|¬0BxA|0Cz=if0BB0+if0CC0yxA|¬0BxA|0Cz=y/xif0BB0+if0CC0
149 142 146 148 cbvopab1 xz|xxA|¬0BxA|0Cz=if0BB0+if0CC0=yz|yxA|¬0BxA|0Cz=y/xif0BB0+if0CC0
150 df-mpt xxA|¬0BxA|0Cif0BB0+if0CC0=xz|xxA|¬0BxA|0Cz=if0BB0+if0CC0
151 df-mpt yxA|¬0BxA|0Cy/xif0BB0+if0CC0=yz|yxA|¬0BxA|0Cz=y/xif0BB0+if0CC0
152 149 150 151 3eqtr4i xxA|¬0BxA|0Cif0BB0+if0CC0=yxA|¬0BxA|0Cy/xif0BB0+if0CC0
153 140 141 152 3eqtr4g xA|¬0BxA|0CAxAif0BB0+if0CC0xA|¬0BxA|0C=xxA|¬0BxA|0Cif0BB0+if0CC0
154 139 153 ax-mp xAif0BB0+if0CC0xA|¬0BxA|0C=xxA|¬0BxA|0Cif0BB0+if0CC0
155 resmpt xA|¬0BxA|0CAyAy/xCxA|¬0BxA|0C=yxA|¬0BxA|0Cy/xC
156 nfcv _yC
157 nfcsb1v _xy/xC
158 csbeq1a x=yC=y/xC
159 156 157 158 cbvmpt xAC=yAy/xC
160 159 reseq1i xACxA|¬0BxA|0C=yAy/xCxA|¬0BxA|0C
161 nfv yxxA|¬0BxA|0Cz=C
162 157 nfeq2 xz=y/xC
163 145 162 nfan xyxA|¬0BxA|0Cz=y/xC
164 158 eqeq2d x=yz=Cz=y/xC
165 147 164 anbi12d x=yxxA|¬0BxA|0Cz=CyxA|¬0BxA|0Cz=y/xC
166 161 163 165 cbvopab1 xz|xxA|¬0BxA|0Cz=C=yz|yxA|¬0BxA|0Cz=y/xC
167 df-mpt xxA|¬0BxA|0CC=xz|xxA|¬0BxA|0Cz=C
168 df-mpt yxA|¬0BxA|0Cy/xC=yz|yxA|¬0BxA|0Cz=y/xC
169 166 167 168 3eqtr4i xxA|¬0BxA|0CC=yxA|¬0BxA|0Cy/xC
170 155 160 169 3eqtr4g xA|¬0BxA|0CAxACxA|¬0BxA|0C=xxA|¬0BxA|0CC
171 139 170 ax-mp xACxA|¬0BxA|0C=xxA|¬0BxA|0CC
172 136 154 171 3eqtr4g φxAif0BB0+if0CC0xA|¬0BxA|0C=xACxA|¬0BxA|0C
173 122 172 eqtrid φxAif0BB0+if0CC0xA|0CxA|¬0BxA|0C=xACxA|¬0BxA|0C
174 85 mptpreima xAB-1−∞0=xA|B−∞0
175 elioomnf 0*B−∞0BB<0
176 78 175 ax-mp B−∞0BB<0
177 2 biantrurd φxAB<0BB<0
178 ltnle B0B<0¬0B
179 2 6 178 sylancl φxAB<0¬0B
180 177 179 bitr3d φxABB<0¬0B
181 176 180 bitrid φxAB−∞0¬0B
182 181 rabbidva φxA|B−∞0=xA|¬0B
183 174 182 eqtrid φxAB-1−∞0=xA|¬0B
184 mbfima xABMblFnxAB:AxAB-1−∞0domvol
185 1 89 184 syl2anc φxAB-1−∞0domvol
186 183 185 eqeltrrd φxA|¬0Bdomvol
187 inmbl xA|¬0BdomvolxA|0CdomvolxA|¬0BxA|0Cdomvol
188 186 114 187 syl2anc φxA|¬0BxA|0Cdomvol
189 mbfres xACMblFnxA|¬0BxA|0CdomvolxACxA|¬0BxA|0CMblFn
190 3 188 189 syl2anc φxACxA|¬0BxA|0CMblFn
191 173 190 eqeltrd φxAif0BB0+if0CC0xA|0CxA|¬0BxA|0CMblFn
192 ssid AA
193 dfrab3ss AAxA|0C=AxA|0C
194 192 193 ax-mp xA|0C=AxA|0C
195 rabxm A=xA|0BxA|¬0B
196 195 ineq1i AxA|0C=xA|0BxA|¬0BxA|0C
197 indir xA|0BxA|¬0BxA|0C=xA|0BxA|0CxA|¬0BxA|0C
198 194 196 197 3eqtrri xA|0BxA|0CxA|¬0BxA|0C=xA|0C
199 198 a1i φxA|0BxA|0CxA|¬0BxA|0C=xA|0C
200 15 119 191 199 mbfres2 φxAif0BB0+if0CC0xA|0CMblFn
201 rabid xxA|¬0CxA¬0C
202 iffalse ¬0Cif0CC0=0
203 202 oveq2d ¬0Cif0BB0+if0CC0=if0BB0+0
204 8 recnd φxAif0BB0
205 204 addridd φxAif0BB0+0=if0BB0
206 203 205 sylan9eqr φxA¬0Cif0BB0+if0CC0=if0BB0
207 206 anasss φxA¬0Cif0BB0+if0CC0=if0BB0
208 201 207 sylan2b φxxA|¬0Cif0BB0+if0CC0=if0BB0
209 208 mpteq2dva φxxA|¬0Cif0BB0+if0CC0=xxA|¬0Cif0BB0
210 ssrab2 xA|¬0CA
211 resmpt xA|¬0CAyAy/xif0BB0+if0CC0xA|¬0C=yxA|¬0Cy/xif0BB0+if0CC0
212 37 reseq1i xAif0BB0+if0CC0xA|¬0C=yAy/xif0BB0+if0CC0xA|¬0C
213 nfv yxxA|¬0Cz=if0BB0+if0CC0
214 nfrab1 _xxA|¬0C
215 214 nfcri xyxA|¬0C
216 215 44 nfan xyxA|¬0Cz=y/xif0BB0+if0CC0
217 eleq1w x=yxxA|¬0CyxA|¬0C
218 217 47 anbi12d x=yxxA|¬0Cz=if0BB0+if0CC0yxA|¬0Cz=y/xif0BB0+if0CC0
219 213 216 218 cbvopab1 xz|xxA|¬0Cz=if0BB0+if0CC0=yz|yxA|¬0Cz=y/xif0BB0+if0CC0
220 df-mpt xxA|¬0Cif0BB0+if0CC0=xz|xxA|¬0Cz=if0BB0+if0CC0
221 df-mpt yxA|¬0Cy/xif0BB0+if0CC0=yz|yxA|¬0Cz=y/xif0BB0+if0CC0
222 219 220 221 3eqtr4i xxA|¬0Cif0BB0+if0CC0=yxA|¬0Cy/xif0BB0+if0CC0
223 211 212 222 3eqtr4g xA|¬0CAxAif0BB0+if0CC0xA|¬0C=xxA|¬0Cif0BB0+if0CC0
224 210 223 ax-mp xAif0BB0+if0CC0xA|¬0C=xxA|¬0Cif0BB0+if0CC0
225 resmpt xA|¬0CAyAy/xif0BB0xA|¬0C=yxA|¬0Cy/xif0BB0
226 nfcv _yif0BB0
227 nfcsb1v _xy/xif0BB0
228 csbeq1a x=yif0BB0=y/xif0BB0
229 226 227 228 cbvmpt xAif0BB0=yAy/xif0BB0
230 229 reseq1i xAif0BB0xA|¬0C=yAy/xif0BB0xA|¬0C
231 nfv yxxA|¬0Cz=if0BB0
232 227 nfeq2 xz=y/xif0BB0
233 215 232 nfan xyxA|¬0Cz=y/xif0BB0
234 228 eqeq2d x=yz=if0BB0z=y/xif0BB0
235 217 234 anbi12d x=yxxA|¬0Cz=if0BB0yxA|¬0Cz=y/xif0BB0
236 231 233 235 cbvopab1 xz|xxA|¬0Cz=if0BB0=yz|yxA|¬0Cz=y/xif0BB0
237 df-mpt xxA|¬0Cif0BB0=xz|xxA|¬0Cz=if0BB0
238 df-mpt yxA|¬0Cy/xif0BB0=yz|yxA|¬0Cz=y/xif0BB0
239 236 237 238 3eqtr4i xxA|¬0Cif0BB0=yxA|¬0Cy/xif0BB0
240 225 230 239 3eqtr4g xA|¬0CAxAif0BB0xA|¬0C=xxA|¬0Cif0BB0
241 210 240 ax-mp xAif0BB0xA|¬0C=xxA|¬0Cif0BB0
242 209 224 241 3eqtr4g φxAif0BB0+if0CC0xA|¬0C=xAif0BB0xA|¬0C
243 2 1 mbfpos φxAif0BB0MblFn
244 103 mptpreima xAC-1−∞0=xA|C−∞0
245 elioomnf 0*C−∞0CC<0
246 78 245 ax-mp C−∞0CC<0
247 4 biantrurd φxAC<0CC<0
248 ltnle C0C<0¬0C
249 4 6 248 sylancl φxAC<0¬0C
250 247 249 bitr3d φxACC<0¬0C
251 246 250 bitrid φxAC−∞0¬0C
252 251 rabbidva φxA|C−∞0=xA|¬0C
253 244 252 eqtrid φxAC-1−∞0=xA|¬0C
254 mbfima xACMblFnxAC:AxAC-1−∞0domvol
255 3 107 254 syl2anc φxAC-1−∞0domvol
256 253 255 eqeltrrd φxA|¬0Cdomvol
257 mbfres xAif0BB0MblFnxA|¬0CdomvolxAif0BB0xA|¬0CMblFn
258 243 256 257 syl2anc φxAif0BB0xA|¬0CMblFn
259 242 258 eqeltrd φxAif0BB0+if0CC0xA|¬0CMblFn
260 rabxm A=xA|0CxA|¬0C
261 260 eqcomi xA|0CxA|¬0C=A
262 261 a1i φxA|0CxA|¬0C=A
263 12 200 259 262 mbfres2 φxAif0BB0+if0CC0MblFn