Metamath Proof Explorer


Theorem mdet0pr

Description: The determinant function for 0-dimensional matrices on a given ring is the function mapping the empty set to the unity element of that ring. (Contributed by AV, 28-Feb-2019)

Ref Expression
Assertion mdet0pr RRingmaDetR=1R

Proof

Step Hyp Ref Expression
1 eqid maDetR=maDetR
2 eqid MatR=MatR
3 eqid BaseMatR=BaseMatR
4 eqid BaseSymGrp=BaseSymGrp
5 eqid ℤRHomR=ℤRHomR
6 eqid pmSgn=pmSgn
7 eqid R=R
8 eqid mulGrpR=mulGrpR
9 1 2 3 4 5 6 7 8 mdetfval maDetR=mBaseMatRRpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxmx
10 9 a1i RRingmaDetR=mBaseMatRRpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxmx
11 mat0dimbas0 RRingBaseMatR=
12 11 mpteq1d RRingmBaseMatRRpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxmx=mRpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxmx
13 0ex V
14 13 a1i RRingV
15 ovex RpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxxV
16 oveq m=pxmx=pxx
17 16 mpteq2dv m=xpxmx=xpxx
18 17 oveq2d m=mulGrpRxpxmx=mulGrpRxpxx
19 18 oveq2d m=ℤRHomRpmSgnpRmulGrpRxpxmx=ℤRHomRpmSgnpRmulGrpRxpxx
20 19 mpteq2dv m=pBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxmx=pBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxx
21 20 oveq2d m=RpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxmx=RpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxx
22 21 fmptsng VRpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxxVRpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxx=mRpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxmx
23 14 15 22 sylancl RRingRpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxx=mRpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxmx
24 mpt0 xpxx=
25 24 a1i RRingxpxx=
26 25 oveq2d RRingmulGrpRxpxx=mulGrpR
27 eqid 0mulGrpR=0mulGrpR
28 27 gsum0 mulGrpR=0mulGrpR
29 26 28 eqtrdi RRingmulGrpRxpxx=0mulGrpR
30 29 oveq2d RRingℤRHomRpmSgnpRmulGrpRxpxx=ℤRHomRpmSgnpR0mulGrpR
31 30 mpteq2dv RRingpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxx=pBaseSymGrpℤRHomRpmSgnpR0mulGrpR
32 31 oveq2d RRingRpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxx=RpBaseSymGrpℤRHomRpmSgnpR0mulGrpR
33 eqid 1R=1R
34 8 33 ringidval 1R=0mulGrpR
35 34 eqcomi 0mulGrpR=1R
36 35 a1i RRingpBaseSymGrp0mulGrpR=1R
37 36 oveq2d RRingpBaseSymGrpℤRHomRpmSgnpR0mulGrpR=ℤRHomRpmSgnpR1R
38 0fin Fin
39 4 6 5 zrhcopsgnelbas RRingFinpBaseSymGrpℤRHomRpmSgnpBaseR
40 38 39 mp3an2 RRingpBaseSymGrpℤRHomRpmSgnpBaseR
41 eqid BaseR=BaseR
42 41 7 33 ringridm RRingℤRHomRpmSgnpBaseRℤRHomRpmSgnpR1R=ℤRHomRpmSgnp
43 40 42 syldan RRingpBaseSymGrpℤRHomRpmSgnpR1R=ℤRHomRpmSgnp
44 37 43 eqtrd RRingpBaseSymGrpℤRHomRpmSgnpR0mulGrpR=ℤRHomRpmSgnp
45 44 mpteq2dva RRingpBaseSymGrpℤRHomRpmSgnpR0mulGrpR=pBaseSymGrpℤRHomRpmSgnp
46 45 oveq2d RRingRpBaseSymGrpℤRHomRpmSgnpR0mulGrpR=RpBaseSymGrpℤRHomRpmSgnp
47 simpl RRingpBaseSymGrpRRing
48 38 a1i RRingpBaseSymGrpFin
49 simpr RRingpBaseSymGrppBaseSymGrp
50 elsni pp=
51 fveq2 p=pmSgnp=pmSgn
52 psgn0fv0 pmSgn=1
53 51 52 eqtrdi p=pmSgnp=1
54 50 53 syl ppmSgnp=1
55 symgbas0 BaseSymGrp=
56 54 55 eleq2s pBaseSymGrppmSgnp=1
57 56 adantl RRingpBaseSymGrppmSgnp=1
58 eqid SymGrp=SymGrp
59 58 4 6 psgnevpmb FinppmEvenpBaseSymGrppmSgnp=1
60 48 59 syl RRingpBaseSymGrpppmEvenpBaseSymGrppmSgnp=1
61 49 57 60 mpbir2and RRingpBaseSymGrpppmEven
62 5 6 33 zrhpsgnevpm RRingFinppmEvenℤRHomRpmSgnp=1R
63 47 48 61 62 syl3anc RRingpBaseSymGrpℤRHomRpmSgnp=1R
64 63 mpteq2dva RRingpBaseSymGrpℤRHomRpmSgnp=pBaseSymGrp1R
65 64 oveq2d RRingRpBaseSymGrpℤRHomRpmSgnp=RpBaseSymGrp1R
66 55 a1i RRingBaseSymGrp=
67 66 mpteq1d RRingpBaseSymGrp1R=p1R
68 67 oveq2d RRingRpBaseSymGrp1R=Rp1R
69 ringmnd RRingRMnd
70 41 33 ringidcl RRing1RBaseR
71 eqidd p=1R=1R
72 41 71 gsumsn RMndV1RBaseRRp1R=1R
73 69 14 70 72 syl3anc RRingRp1R=1R
74 65 68 73 3eqtrd RRingRpBaseSymGrpℤRHomRpmSgnp=1R
75 32 46 74 3eqtrd RRingRpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxx=1R
76 75 opeq2d RRingRpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxx=1R
77 76 sneqd RRingRpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxx=1R
78 23 77 eqtr3d RRingmRpBaseSymGrpℤRHomRpmSgnpRmulGrpRxpxmx=1R
79 10 12 78 3eqtrd RRingmaDetR=1R