Metamath Proof Explorer


Theorem mdetpmtr12

Description: The determinant of a matrix with permuted rows and columns is the determinant of the original matrix multiplied by the product of the signs of the permutations. (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypotheses mdetpmtr.a A=NMatR
mdetpmtr.b B=BaseA
mdetpmtr.d D=NmaDetR
mdetpmtr.g G=BaseSymGrpN
mdetpmtr.s S=pmSgnN
mdetpmtr.z Z=ℤRHomR
mdetpmtr.t ·˙=R
mdetpmtr12.e E=iN,jNPiMQj
mdetmptr12.r φRCRing
mdetmptr12.n φNFin
mdetmptr12.m φMB
mdetmptr12.p φPG
mdetmptr12.q φQG
Assertion mdetpmtr12 φDM=ZSPSQ·˙DE

Proof

Step Hyp Ref Expression
1 mdetpmtr.a A=NMatR
2 mdetpmtr.b B=BaseA
3 mdetpmtr.d D=NmaDetR
4 mdetpmtr.g G=BaseSymGrpN
5 mdetpmtr.s S=pmSgnN
6 mdetpmtr.z Z=ℤRHomR
7 mdetpmtr.t ·˙=R
8 mdetpmtr12.e E=iN,jNPiMQj
9 mdetmptr12.r φRCRing
10 mdetmptr12.n φNFin
11 mdetmptr12.m φMB
12 mdetmptr12.p φPG
13 mdetmptr12.q φQG
14 fveq2 k=iPk=Pi
15 14 oveq1d k=iPkMl=PiMl
16 oveq2 l=jPiMl=PiMj
17 15 16 cbvmpov kN,lNPkMl=iN,jNPiMj
18 1 2 3 4 5 6 7 17 mdetpmtr1 RCRingNFinMBPGDM=ZSP·˙DkN,lNPkMl
19 9 10 11 12 18 syl22anc φDM=ZSP·˙DkN,lNPkMl
20 eqid BaseR=BaseR
21 12 3ad2ant1 φkNlNPG
22 simp2 φkNlNkN
23 eqid SymGrpN=SymGrpN
24 23 4 symgfv PGkNPkN
25 21 22 24 syl2anc φkNlNPkN
26 simp3 φkNlNlN
27 11 3ad2ant1 φkNlNMB
28 1 20 2 25 26 27 matecld φkNlNPkMlBaseR
29 1 20 2 10 9 28 matbas2d φkN,lNPkMlB
30 eqid iN,jNikN,lNPkMlQj=iN,jNikN,lNPkMlQj
31 1 2 3 4 5 6 7 30 mdetpmtr2 RCRingNFinkN,lNPkMlBQGDkN,lNPkMl=ZSQ·˙DiN,jNikN,lNPkMlQj
32 9 10 29 13 31 syl22anc φDkN,lNPkMl=ZSQ·˙DiN,jNikN,lNPkMlQj
33 simp2 φiNjNiN
34 13 3ad2ant1 φiNjNQG
35 simp3 φiNjNjN
36 23 4 symgfv QGjNQjN
37 34 35 36 syl2anc φiNjNQjN
38 oveq2 l=QjPiMl=PiMQj
39 eqid kN,lNPkMl=kN,lNPkMl
40 ovex PiMQjV
41 15 38 39 40 ovmpo iNQjNikN,lNPkMlQj=PiMQj
42 33 37 41 syl2anc φiNjNikN,lNPkMlQj=PiMQj
43 42 mpoeq3dva φiN,jNikN,lNPkMlQj=iN,jNPiMQj
44 8 43 eqtr4id φE=iN,jNikN,lNPkMlQj
45 44 fveq2d φDE=DiN,jNikN,lNPkMlQj
46 45 oveq2d φZSQ·˙DE=ZSQ·˙DiN,jNikN,lNPkMlQj
47 32 46 eqtr4d φDkN,lNPkMl=ZSQ·˙DE
48 47 oveq2d φZSP·˙DkN,lNPkMl=ZSP·˙ZSQ·˙DE
49 crngring RCRingRRing
50 9 49 syl φRRing
51 4 5 6 zrhcopsgnelbas RRingNFinPGZSPBaseR
52 50 10 12 51 syl3anc φZSPBaseR
53 4 5 6 zrhcopsgnelbas RRingNFinQGZSQBaseR
54 50 10 13 53 syl3anc φZSQBaseR
55 12 3ad2ant1 φiNjNPG
56 23 4 symgfv PGiNPiN
57 55 33 56 syl2anc φiNjNPiN
58 11 3ad2ant1 φiNjNMB
59 1 20 2 57 37 58 matecld φiNjNPiMQjBaseR
60 1 20 2 10 9 59 matbas2d φiN,jNPiMQjB
61 8 60 eqeltrid φEB
62 3 1 2 20 mdetcl RCRingEBDEBaseR
63 9 61 62 syl2anc φDEBaseR
64 20 7 ringass RRingZSPBaseRZSQBaseRDEBaseRZSP·˙ZSQ·˙DE=ZSP·˙ZSQ·˙DE
65 50 52 54 63 64 syl13anc φZSP·˙ZSQ·˙DE=ZSP·˙ZSQ·˙DE
66 4 5 cofipsgn NFinPGZSP=ZSP
67 10 12 66 syl2anc φZSP=ZSP
68 4 5 cofipsgn NFinQGZSQ=ZSQ
69 10 13 68 syl2anc φZSQ=ZSQ
70 67 69 oveq12d φZSP·˙ZSQ=ZSP·˙ZSQ
71 6 zrhrhm RRingZringRingHomR
72 50 71 syl φZringRingHomR
73 1z 1
74 neg1z 1
75 prssi 1111
76 73 74 75 mp2an 11
77 4 5 psgnran NFinPGSP11
78 10 12 77 syl2anc φSP11
79 76 78 sselid φSP
80 4 5 psgnran NFinQGSQ11
81 10 13 80 syl2anc φSQ11
82 76 81 sselid φSQ
83 zringbas =Basering
84 zringmulr ×=ring
85 83 84 7 rhmmul ZringRingHomRSPSQZSPSQ=ZSP·˙ZSQ
86 72 79 82 85 syl3anc φZSPSQ=ZSP·˙ZSQ
87 70 86 eqtr4d φZSP·˙ZSQ=ZSPSQ
88 87 oveq1d φZSP·˙ZSQ·˙DE=ZSPSQ·˙DE
89 65 88 eqtr3d φZSP·˙ZSQ·˙DE=ZSPSQ·˙DE
90 19 48 89 3eqtrd φDM=ZSPSQ·˙DE