Metamath Proof Explorer


Theorem meadjiun

Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meadjiun.1 k φ
meadjiun.m φ M Meas
meadjiun.s S = dom M
meadjiun.b φ k A B S
meadjiun.a φ A ω
meadjiun.dj φ Disj k A B
Assertion meadjiun φ M k A B = sum^ k A M B

Proof

Step Hyp Ref Expression
1 meadjiun.1 k φ
2 meadjiun.m φ M Meas
3 meadjiun.s S = dom M
4 meadjiun.b φ k A B S
5 meadjiun.a φ A ω
6 meadjiun.dj φ Disj k A B
7 4 ex φ k A B S
8 1 7 ralrimi φ k A B S
9 dfiun3g k A B S k A B = ran k A B
10 8 9 syl φ k A B = ran k A B
11 10 fveq2d φ M k A B = M ran k A B
12 eqid k A B = k A B
13 12 rnmptss k A B S ran k A B S
14 8 13 syl φ ran k A B S
15 1stcrestlem A ω ran k A B ω
16 5 15 syl φ ran k A B ω
17 12 disjrnmpt2 Disj k A B Disj x ran k A B x
18 6 17 syl φ Disj x ran k A B x
19 2 3 14 16 18 meadjuni φ M ran k A B = sum^ M ran k A B
20 reldom Rel
21 brrelex1 Rel A ω A V
22 20 21 mpan A ω A V
23 5 22 syl φ A V
24 1 4 12 fmptdf φ k A B : A S
25 fveq2 j = i k A B j = k A B i
26 25 neeq1d j = i k A B j k A B i
27 26 cbvrabv j A | k A B j = i A | k A B i
28 simpr φ i A i A
29 nfv k i A
30 1 29 nfan k φ i A
31 nfcv _ k i
32 31 nfcsb1 _ k i / k B
33 nfcv _ k S
34 32 33 nfel k i / k B S
35 30 34 nfim k φ i A i / k B S
36 eleq1w k = i k A i A
37 36 anbi2d k = i φ k A φ i A
38 csbeq1a k = i B = i / k B
39 38 eleq1d k = i B S i / k B S
40 37 39 imbi12d k = i φ k A B S φ i A i / k B S
41 35 40 4 chvarfv φ i A i / k B S
42 31 32 38 12 fvmptf i A i / k B S k A B i = i / k B
43 28 41 42 syl2anc φ i A k A B i = i / k B
44 43 disjeq2dv φ Disj i A k A B i Disj i A i / k B
45 nfcv _ i B
46 45 32 38 cbvdisj Disj k A B Disj i A i / k B
47 46 bicomi Disj i A i / k B Disj k A B
48 47 a1i φ Disj i A i / k B Disj k A B
49 44 48 bitrd φ Disj i A k A B i Disj k A B
50 6 49 mpbird φ Disj i A k A B i
51 2 3 23 24 27 50 meadjiunlem φ sum^ M ran k A B = sum^ M k A B
52 45 32 38 cbvmpt k A B = i A i / k B
53 52 coeq2i M k A B = M i A i / k B
54 53 a1i φ M k A B = M i A i / k B
55 eqidd φ i A i / k B = i A i / k B
56 2 3 meaf φ M : S 0 +∞
57 56 feqmptd φ M = y S M y
58 fveq2 y = i / k B M y = M i / k B
59 41 55 57 58 fmptco φ M i A i / k B = i A M i / k B
60 nfcv _ i M B
61 nfcv _ k M
62 61 32 nffv _ k M i / k B
63 38 fveq2d k = i M B = M i / k B
64 60 62 63 cbvmpt k A M B = i A M i / k B
65 64 eqcomi i A M i / k B = k A M B
66 65 a1i φ i A M i / k B = k A M B
67 54 59 66 3eqtrd φ M k A B = k A M B
68 67 fveq2d φ sum^ M k A B = sum^ k A M B
69 51 68 eqtrd φ sum^ M ran k A B = sum^ k A M B
70 11 19 69 3eqtrd φ M k A B = sum^ k A M B