Metamath Proof Explorer


Theorem metnrmlem3

Description: Lemma for metnrm . (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Mario Carneiro, 5-Sep-2015)

Ref Expression
Hypotheses metdscn.f F=xXsupranySxDy*<
metdscn.j J=MetOpenD
metnrmlem.1 φD∞MetX
metnrmlem.2 φSClsdJ
metnrmlem.3 φTClsdJ
metnrmlem.4 φST=
metnrmlem.u U=tTtballDif1Ft1Ft2
metnrmlem.g G=xXsupranyTxDy*<
metnrmlem.v V=sSsballDif1Gs1Gs2
Assertion metnrmlem3 φzJwJSzTwzw=

Proof

Step Hyp Ref Expression
1 metdscn.f F=xXsupranySxDy*<
2 metdscn.j J=MetOpenD
3 metnrmlem.1 φD∞MetX
4 metnrmlem.2 φSClsdJ
5 metnrmlem.3 φTClsdJ
6 metnrmlem.4 φST=
7 metnrmlem.u U=tTtballDif1Ft1Ft2
8 metnrmlem.g G=xXsupranyTxDy*<
9 metnrmlem.v V=sSsballDif1Gs1Gs2
10 incom TS=ST
11 10 6 eqtrid φTS=
12 8 2 3 5 4 11 9 metnrmlem2 φVJSV
13 12 simpld φVJ
14 1 2 3 4 5 6 7 metnrmlem2 φUJTU
15 14 simpld φUJ
16 12 simprd φSV
17 14 simprd φTU
18 9 ineq1i VU=sSsballDif1Gs1Gs2U
19 iunin1 sSsballDif1Gs1Gs2U=sSsballDif1Gs1Gs2U
20 18 19 eqtr4i VU=sSsballDif1Gs1Gs2U
21 7 ineq2i sballDif1Gs1Gs2U=sballDif1Gs1Gs2tTtballDif1Ft1Ft2
22 iunin2 tTsballDif1Gs1Gs2tballDif1Ft1Ft2=sballDif1Gs1Gs2tTtballDif1Ft1Ft2
23 21 22 eqtr4i sballDif1Gs1Gs2U=tTsballDif1Gs1Gs2tballDif1Ft1Ft2
24 3 adantr φsStTD∞MetX
25 eqid J=J
26 25 cldss SClsdJSJ
27 4 26 syl φSJ
28 2 mopnuni D∞MetXX=J
29 3 28 syl φX=J
30 27 29 sseqtrrd φSX
31 30 sselda φsSsX
32 31 adantrr φsStTsX
33 25 cldss TClsdJTJ
34 5 33 syl φTJ
35 34 29 sseqtrrd φTX
36 35 sselda φtTtX
37 36 adantrl φsStTtX
38 8 2 3 5 4 11 metnrmlem1a φsS0<Gsif1Gs1Gs+
39 38 simprd φsSif1Gs1Gs+
40 39 adantrr φsStTif1Gs1Gs+
41 40 rphalfcld φsStTif1Gs1Gs2+
42 41 rpxrd φsStTif1Gs1Gs2*
43 1 2 3 4 5 6 metnrmlem1a φtT0<Ftif1Ft1Ft+
44 43 adantrl φsStT0<Ftif1Ft1Ft+
45 44 simprd φsStTif1Ft1Ft+
46 45 rphalfcld φsStTif1Ft1Ft2+
47 46 rpxrd φsStTif1Ft1Ft2*
48 40 rpred φsStTif1Gs1Gs
49 48 rehalfcld φsStTif1Gs1Gs2
50 45 rpred φsStTif1Ft1Ft
51 50 rehalfcld φsStTif1Ft1Ft2
52 49 51 rexaddd φsStTif1Gs1Gs2+𝑒if1Ft1Ft2=if1Gs1Gs2+if1Ft1Ft2
53 48 recnd φsStTif1Gs1Gs
54 50 recnd φsStTif1Ft1Ft
55 2cnd φsStT2
56 2ne0 20
57 56 a1i φsStT20
58 53 54 55 57 divdird φsStTif1Gs1Gs+if1Ft1Ft2=if1Gs1Gs2+if1Ft1Ft2
59 52 58 eqtr4d φsStTif1Gs1Gs2+𝑒if1Ft1Ft2=if1Gs1Gs+if1Ft1Ft2
60 8 2 3 5 4 11 metnrmlem1 φtTsSif1Gs1GstDs
61 60 ancom2s φsStTif1Gs1GstDs
62 xmetsym D∞MetXtXsXtDs=sDt
63 24 37 32 62 syl3anc φsStTtDs=sDt
64 61 63 breqtrd φsStTif1Gs1GssDt
65 1 2 3 4 5 6 metnrmlem1 φsStTif1Ft1FtsDt
66 40 rpxrd φsStTif1Gs1Gs*
67 45 rpxrd φsStTif1Ft1Ft*
68 xmetcl D∞MetXsXtXsDt*
69 24 32 37 68 syl3anc φsStTsDt*
70 xle2add if1Gs1Gs*if1Ft1Ft*sDt*sDt*if1Gs1GssDtif1Ft1FtsDtif1Gs1Gs+𝑒if1Ft1FtsDt+𝑒sDt
71 66 67 69 69 70 syl22anc φsStTif1Gs1GssDtif1Ft1FtsDtif1Gs1Gs+𝑒if1Ft1FtsDt+𝑒sDt
72 64 65 71 mp2and φsStTif1Gs1Gs+𝑒if1Ft1FtsDt+𝑒sDt
73 48 50 readdcld φsStTif1Gs1Gs+if1Ft1Ft
74 73 recnd φsStTif1Gs1Gs+if1Ft1Ft
75 74 55 57 divcan2d φsStT2if1Gs1Gs+if1Ft1Ft2=if1Gs1Gs+if1Ft1Ft
76 2re 2
77 73 rehalfcld φsStTif1Gs1Gs+if1Ft1Ft2
78 rexmul 2if1Gs1Gs+if1Ft1Ft22𝑒if1Gs1Gs+if1Ft1Ft2=2if1Gs1Gs+if1Ft1Ft2
79 76 77 78 sylancr φsStT2𝑒if1Gs1Gs+if1Ft1Ft2=2if1Gs1Gs+if1Ft1Ft2
80 48 50 rexaddd φsStTif1Gs1Gs+𝑒if1Ft1Ft=if1Gs1Gs+if1Ft1Ft
81 75 79 80 3eqtr4d φsStT2𝑒if1Gs1Gs+if1Ft1Ft2=if1Gs1Gs+𝑒if1Ft1Ft
82 x2times sDt*2𝑒sDt=sDt+𝑒sDt
83 69 82 syl φsStT2𝑒sDt=sDt+𝑒sDt
84 72 81 83 3brtr4d φsStT2𝑒if1Gs1Gs+if1Ft1Ft22𝑒sDt
85 77 rexrd φsStTif1Gs1Gs+if1Ft1Ft2*
86 2rp 2+
87 86 a1i φsStT2+
88 xlemul2 if1Gs1Gs+if1Ft1Ft2*sDt*2+if1Gs1Gs+if1Ft1Ft2sDt2𝑒if1Gs1Gs+if1Ft1Ft22𝑒sDt
89 85 69 87 88 syl3anc φsStTif1Gs1Gs+if1Ft1Ft2sDt2𝑒if1Gs1Gs+if1Ft1Ft22𝑒sDt
90 84 89 mpbird φsStTif1Gs1Gs+if1Ft1Ft2sDt
91 59 90 eqbrtrd φsStTif1Gs1Gs2+𝑒if1Ft1Ft2sDt
92 bldisj D∞MetXsXtXif1Gs1Gs2*if1Ft1Ft2*if1Gs1Gs2+𝑒if1Ft1Ft2sDtsballDif1Gs1Gs2tballDif1Ft1Ft2=
93 24 32 37 42 47 91 92 syl33anc φsStTsballDif1Gs1Gs2tballDif1Ft1Ft2=
94 eqimss sballDif1Gs1Gs2tballDif1Ft1Ft2=sballDif1Gs1Gs2tballDif1Ft1Ft2
95 93 94 syl φsStTsballDif1Gs1Gs2tballDif1Ft1Ft2
96 95 anassrs φsStTsballDif1Gs1Gs2tballDif1Ft1Ft2
97 96 ralrimiva φsStTsballDif1Gs1Gs2tballDif1Ft1Ft2
98 iunss tTsballDif1Gs1Gs2tballDif1Ft1Ft2tTsballDif1Gs1Gs2tballDif1Ft1Ft2
99 97 98 sylibr φsStTsballDif1Gs1Gs2tballDif1Ft1Ft2
100 23 99 eqsstrid φsSsballDif1Gs1Gs2U
101 100 ralrimiva φsSsballDif1Gs1Gs2U
102 iunss sSsballDif1Gs1Gs2UsSsballDif1Gs1Gs2U
103 101 102 sylibr φsSsballDif1Gs1Gs2U
104 ss0 sSsballDif1Gs1Gs2UsSsballDif1Gs1Gs2U=
105 103 104 syl φsSsballDif1Gs1Gs2U=
106 20 105 eqtrid φVU=
107 sseq2 z=VSzSV
108 ineq1 z=Vzw=Vw
109 108 eqeq1d z=Vzw=Vw=
110 107 109 3anbi13d z=VSzTwzw=SVTwVw=
111 sseq2 w=UTwTU
112 ineq2 w=UVw=VU
113 112 eqeq1d w=UVw=VU=
114 111 113 3anbi23d w=USVTwVw=SVTUVU=
115 110 114 rspc2ev VJUJSVTUVU=zJwJSzTwzw=
116 13 15 16 17 106 115 syl113anc φzJwJSzTwzw=