Step |
Hyp |
Ref |
Expression |
1 |
|
metdscn.f |
|
2 |
|
metdscn.j |
|
3 |
|
metnrmlem.1 |
|
4 |
|
metnrmlem.2 |
|
5 |
|
metnrmlem.3 |
|
6 |
|
metnrmlem.4 |
|
7 |
|
metnrmlem.u |
|
8 |
|
metnrmlem.g |
|
9 |
|
metnrmlem.v |
|
10 |
|
incom |
|
11 |
10 6
|
eqtrid |
|
12 |
8 2 3 5 4 11 9
|
metnrmlem2 |
|
13 |
12
|
simpld |
|
14 |
1 2 3 4 5 6 7
|
metnrmlem2 |
|
15 |
14
|
simpld |
|
16 |
12
|
simprd |
|
17 |
14
|
simprd |
|
18 |
9
|
ineq1i |
|
19 |
|
iunin1 |
|
20 |
18 19
|
eqtr4i |
|
21 |
7
|
ineq2i |
|
22 |
|
iunin2 |
|
23 |
21 22
|
eqtr4i |
|
24 |
3
|
adantr |
|
25 |
|
eqid |
|
26 |
25
|
cldss |
|
27 |
4 26
|
syl |
|
28 |
2
|
mopnuni |
|
29 |
3 28
|
syl |
|
30 |
27 29
|
sseqtrrd |
|
31 |
30
|
sselda |
|
32 |
31
|
adantrr |
|
33 |
25
|
cldss |
|
34 |
5 33
|
syl |
|
35 |
34 29
|
sseqtrrd |
|
36 |
35
|
sselda |
|
37 |
36
|
adantrl |
|
38 |
8 2 3 5 4 11
|
metnrmlem1a |
|
39 |
38
|
simprd |
|
40 |
39
|
adantrr |
|
41 |
40
|
rphalfcld |
|
42 |
41
|
rpxrd |
|
43 |
1 2 3 4 5 6
|
metnrmlem1a |
|
44 |
43
|
adantrl |
|
45 |
44
|
simprd |
|
46 |
45
|
rphalfcld |
|
47 |
46
|
rpxrd |
|
48 |
40
|
rpred |
|
49 |
48
|
rehalfcld |
|
50 |
45
|
rpred |
|
51 |
50
|
rehalfcld |
|
52 |
49 51
|
rexaddd |
|
53 |
48
|
recnd |
|
54 |
50
|
recnd |
|
55 |
|
2cnd |
|
56 |
|
2ne0 |
|
57 |
56
|
a1i |
|
58 |
53 54 55 57
|
divdird |
|
59 |
52 58
|
eqtr4d |
|
60 |
8 2 3 5 4 11
|
metnrmlem1 |
|
61 |
60
|
ancom2s |
|
62 |
|
xmetsym |
|
63 |
24 37 32 62
|
syl3anc |
|
64 |
61 63
|
breqtrd |
|
65 |
1 2 3 4 5 6
|
metnrmlem1 |
|
66 |
40
|
rpxrd |
|
67 |
45
|
rpxrd |
|
68 |
|
xmetcl |
|
69 |
24 32 37 68
|
syl3anc |
|
70 |
|
xle2add |
|
71 |
66 67 69 69 70
|
syl22anc |
|
72 |
64 65 71
|
mp2and |
|
73 |
48 50
|
readdcld |
|
74 |
73
|
recnd |
|
75 |
74 55 57
|
divcan2d |
|
76 |
|
2re |
|
77 |
73
|
rehalfcld |
|
78 |
|
rexmul |
|
79 |
76 77 78
|
sylancr |
|
80 |
48 50
|
rexaddd |
|
81 |
75 79 80
|
3eqtr4d |
|
82 |
|
x2times |
|
83 |
69 82
|
syl |
|
84 |
72 81 83
|
3brtr4d |
|
85 |
77
|
rexrd |
|
86 |
|
2rp |
|
87 |
86
|
a1i |
|
88 |
|
xlemul2 |
|
89 |
85 69 87 88
|
syl3anc |
|
90 |
84 89
|
mpbird |
|
91 |
59 90
|
eqbrtrd |
|
92 |
|
bldisj |
|
93 |
24 32 37 42 47 91 92
|
syl33anc |
|
94 |
|
eqimss |
|
95 |
93 94
|
syl |
|
96 |
95
|
anassrs |
|
97 |
96
|
ralrimiva |
|
98 |
|
iunss |
|
99 |
97 98
|
sylibr |
|
100 |
23 99
|
eqsstrid |
|
101 |
100
|
ralrimiva |
|
102 |
|
iunss |
|
103 |
101 102
|
sylibr |
|
104 |
|
ss0 |
|
105 |
103 104
|
syl |
|
106 |
20 105
|
eqtrid |
|
107 |
|
sseq2 |
|
108 |
|
ineq1 |
|
109 |
108
|
eqeq1d |
|
110 |
107 109
|
3anbi13d |
|
111 |
|
sseq2 |
|
112 |
|
ineq2 |
|
113 |
112
|
eqeq1d |
|
114 |
111 113
|
3anbi23d |
|
115 |
110 114
|
rspc2ev |
|
116 |
13 15 16 17 106 115
|
syl113anc |
|