Metamath Proof Explorer


Theorem metnrmlem3

Description: Lemma for metnrm . (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Mario Carneiro, 5-Sep-2015)

Ref Expression
Hypotheses metdscn.f F = x X sup ran y S x D y * <
metdscn.j J = MetOpen D
metnrmlem.1 φ D ∞Met X
metnrmlem.2 φ S Clsd J
metnrmlem.3 φ T Clsd J
metnrmlem.4 φ S T =
metnrmlem.u U = t T t ball D if 1 F t 1 F t 2
metnrmlem.g G = x X sup ran y T x D y * <
metnrmlem.v V = s S s ball D if 1 G s 1 G s 2
Assertion metnrmlem3 φ z J w J S z T w z w =

Proof

Step Hyp Ref Expression
1 metdscn.f F = x X sup ran y S x D y * <
2 metdscn.j J = MetOpen D
3 metnrmlem.1 φ D ∞Met X
4 metnrmlem.2 φ S Clsd J
5 metnrmlem.3 φ T Clsd J
6 metnrmlem.4 φ S T =
7 metnrmlem.u U = t T t ball D if 1 F t 1 F t 2
8 metnrmlem.g G = x X sup ran y T x D y * <
9 metnrmlem.v V = s S s ball D if 1 G s 1 G s 2
10 incom T S = S T
11 10 6 eqtrid φ T S =
12 8 2 3 5 4 11 9 metnrmlem2 φ V J S V
13 12 simpld φ V J
14 1 2 3 4 5 6 7 metnrmlem2 φ U J T U
15 14 simpld φ U J
16 12 simprd φ S V
17 14 simprd φ T U
18 9 ineq1i V U = s S s ball D if 1 G s 1 G s 2 U
19 iunin1 s S s ball D if 1 G s 1 G s 2 U = s S s ball D if 1 G s 1 G s 2 U
20 18 19 eqtr4i V U = s S s ball D if 1 G s 1 G s 2 U
21 7 ineq2i s ball D if 1 G s 1 G s 2 U = s ball D if 1 G s 1 G s 2 t T t ball D if 1 F t 1 F t 2
22 iunin2 t T s ball D if 1 G s 1 G s 2 t ball D if 1 F t 1 F t 2 = s ball D if 1 G s 1 G s 2 t T t ball D if 1 F t 1 F t 2
23 21 22 eqtr4i s ball D if 1 G s 1 G s 2 U = t T s ball D if 1 G s 1 G s 2 t ball D if 1 F t 1 F t 2
24 3 adantr φ s S t T D ∞Met X
25 eqid J = J
26 25 cldss S Clsd J S J
27 4 26 syl φ S J
28 2 mopnuni D ∞Met X X = J
29 3 28 syl φ X = J
30 27 29 sseqtrrd φ S X
31 30 sselda φ s S s X
32 31 adantrr φ s S t T s X
33 25 cldss T Clsd J T J
34 5 33 syl φ T J
35 34 29 sseqtrrd φ T X
36 35 sselda φ t T t X
37 36 adantrl φ s S t T t X
38 8 2 3 5 4 11 metnrmlem1a φ s S 0 < G s if 1 G s 1 G s +
39 38 simprd φ s S if 1 G s 1 G s +
40 39 adantrr φ s S t T if 1 G s 1 G s +
41 40 rphalfcld φ s S t T if 1 G s 1 G s 2 +
42 41 rpxrd φ s S t T if 1 G s 1 G s 2 *
43 1 2 3 4 5 6 metnrmlem1a φ t T 0 < F t if 1 F t 1 F t +
44 43 adantrl φ s S t T 0 < F t if 1 F t 1 F t +
45 44 simprd φ s S t T if 1 F t 1 F t +
46 45 rphalfcld φ s S t T if 1 F t 1 F t 2 +
47 46 rpxrd φ s S t T if 1 F t 1 F t 2 *
48 40 rpred φ s S t T if 1 G s 1 G s
49 48 rehalfcld φ s S t T if 1 G s 1 G s 2
50 45 rpred φ s S t T if 1 F t 1 F t
51 50 rehalfcld φ s S t T if 1 F t 1 F t 2
52 49 51 rexaddd φ s S t T if 1 G s 1 G s 2 + 𝑒 if 1 F t 1 F t 2 = if 1 G s 1 G s 2 + if 1 F t 1 F t 2
53 48 recnd φ s S t T if 1 G s 1 G s
54 50 recnd φ s S t T if 1 F t 1 F t
55 2cnd φ s S t T 2
56 2ne0 2 0
57 56 a1i φ s S t T 2 0
58 53 54 55 57 divdird φ s S t T if 1 G s 1 G s + if 1 F t 1 F t 2 = if 1 G s 1 G s 2 + if 1 F t 1 F t 2
59 52 58 eqtr4d φ s S t T if 1 G s 1 G s 2 + 𝑒 if 1 F t 1 F t 2 = if 1 G s 1 G s + if 1 F t 1 F t 2
60 8 2 3 5 4 11 metnrmlem1 φ t T s S if 1 G s 1 G s t D s
61 60 ancom2s φ s S t T if 1 G s 1 G s t D s
62 xmetsym D ∞Met X t X s X t D s = s D t
63 24 37 32 62 syl3anc φ s S t T t D s = s D t
64 61 63 breqtrd φ s S t T if 1 G s 1 G s s D t
65 1 2 3 4 5 6 metnrmlem1 φ s S t T if 1 F t 1 F t s D t
66 40 rpxrd φ s S t T if 1 G s 1 G s *
67 45 rpxrd φ s S t T if 1 F t 1 F t *
68 xmetcl D ∞Met X s X t X s D t *
69 24 32 37 68 syl3anc φ s S t T s D t *
70 xle2add if 1 G s 1 G s * if 1 F t 1 F t * s D t * s D t * if 1 G s 1 G s s D t if 1 F t 1 F t s D t if 1 G s 1 G s + 𝑒 if 1 F t 1 F t s D t + 𝑒 s D t
71 66 67 69 69 70 syl22anc φ s S t T if 1 G s 1 G s s D t if 1 F t 1 F t s D t if 1 G s 1 G s + 𝑒 if 1 F t 1 F t s D t + 𝑒 s D t
72 64 65 71 mp2and φ s S t T if 1 G s 1 G s + 𝑒 if 1 F t 1 F t s D t + 𝑒 s D t
73 48 50 readdcld φ s S t T if 1 G s 1 G s + if 1 F t 1 F t
74 73 recnd φ s S t T if 1 G s 1 G s + if 1 F t 1 F t
75 74 55 57 divcan2d φ s S t T 2 if 1 G s 1 G s + if 1 F t 1 F t 2 = if 1 G s 1 G s + if 1 F t 1 F t
76 2re 2
77 73 rehalfcld φ s S t T if 1 G s 1 G s + if 1 F t 1 F t 2
78 rexmul 2 if 1 G s 1 G s + if 1 F t 1 F t 2 2 𝑒 if 1 G s 1 G s + if 1 F t 1 F t 2 = 2 if 1 G s 1 G s + if 1 F t 1 F t 2
79 76 77 78 sylancr φ s S t T 2 𝑒 if 1 G s 1 G s + if 1 F t 1 F t 2 = 2 if 1 G s 1 G s + if 1 F t 1 F t 2
80 48 50 rexaddd φ s S t T if 1 G s 1 G s + 𝑒 if 1 F t 1 F t = if 1 G s 1 G s + if 1 F t 1 F t
81 75 79 80 3eqtr4d φ s S t T 2 𝑒 if 1 G s 1 G s + if 1 F t 1 F t 2 = if 1 G s 1 G s + 𝑒 if 1 F t 1 F t
82 x2times s D t * 2 𝑒 s D t = s D t + 𝑒 s D t
83 69 82 syl φ s S t T 2 𝑒 s D t = s D t + 𝑒 s D t
84 72 81 83 3brtr4d φ s S t T 2 𝑒 if 1 G s 1 G s + if 1 F t 1 F t 2 2 𝑒 s D t
85 77 rexrd φ s S t T if 1 G s 1 G s + if 1 F t 1 F t 2 *
86 2rp 2 +
87 86 a1i φ s S t T 2 +
88 xlemul2 if 1 G s 1 G s + if 1 F t 1 F t 2 * s D t * 2 + if 1 G s 1 G s + if 1 F t 1 F t 2 s D t 2 𝑒 if 1 G s 1 G s + if 1 F t 1 F t 2 2 𝑒 s D t
89 85 69 87 88 syl3anc φ s S t T if 1 G s 1 G s + if 1 F t 1 F t 2 s D t 2 𝑒 if 1 G s 1 G s + if 1 F t 1 F t 2 2 𝑒 s D t
90 84 89 mpbird φ s S t T if 1 G s 1 G s + if 1 F t 1 F t 2 s D t
91 59 90 eqbrtrd φ s S t T if 1 G s 1 G s 2 + 𝑒 if 1 F t 1 F t 2 s D t
92 bldisj D ∞Met X s X t X if 1 G s 1 G s 2 * if 1 F t 1 F t 2 * if 1 G s 1 G s 2 + 𝑒 if 1 F t 1 F t 2 s D t s ball D if 1 G s 1 G s 2 t ball D if 1 F t 1 F t 2 =
93 24 32 37 42 47 91 92 syl33anc φ s S t T s ball D if 1 G s 1 G s 2 t ball D if 1 F t 1 F t 2 =
94 eqimss s ball D if 1 G s 1 G s 2 t ball D if 1 F t 1 F t 2 = s ball D if 1 G s 1 G s 2 t ball D if 1 F t 1 F t 2
95 93 94 syl φ s S t T s ball D if 1 G s 1 G s 2 t ball D if 1 F t 1 F t 2
96 95 anassrs φ s S t T s ball D if 1 G s 1 G s 2 t ball D if 1 F t 1 F t 2
97 96 ralrimiva φ s S t T s ball D if 1 G s 1 G s 2 t ball D if 1 F t 1 F t 2
98 iunss t T s ball D if 1 G s 1 G s 2 t ball D if 1 F t 1 F t 2 t T s ball D if 1 G s 1 G s 2 t ball D if 1 F t 1 F t 2
99 97 98 sylibr φ s S t T s ball D if 1 G s 1 G s 2 t ball D if 1 F t 1 F t 2
100 23 99 eqsstrid φ s S s ball D if 1 G s 1 G s 2 U
101 100 ralrimiva φ s S s ball D if 1 G s 1 G s 2 U
102 iunss s S s ball D if 1 G s 1 G s 2 U s S s ball D if 1 G s 1 G s 2 U
103 101 102 sylibr φ s S s ball D if 1 G s 1 G s 2 U
104 ss0 s S s ball D if 1 G s 1 G s 2 U s S s ball D if 1 G s 1 G s 2 U =
105 103 104 syl φ s S s ball D if 1 G s 1 G s 2 U =
106 20 105 eqtrid φ V U =
107 sseq2 z = V S z S V
108 ineq1 z = V z w = V w
109 108 eqeq1d z = V z w = V w =
110 107 109 3anbi13d z = V S z T w z w = S V T w V w =
111 sseq2 w = U T w T U
112 ineq2 w = U V w = V U
113 112 eqeq1d w = U V w = V U =
114 111 113 3anbi23d w = U S V T w V w = S V T U V U =
115 110 114 rspc2ev V J U J S V T U V U = z J w J S z T w z w =
116 13 15 16 17 106 115 syl113anc φ z J w J S z T w z w =