| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metdscn.f |
|
| 2 |
|
metdscn.j |
|
| 3 |
|
metnrmlem.1 |
|
| 4 |
|
metnrmlem.2 |
|
| 5 |
|
metnrmlem.3 |
|
| 6 |
|
metnrmlem.4 |
|
| 7 |
|
metnrmlem.u |
|
| 8 |
|
metnrmlem.g |
|
| 9 |
|
metnrmlem.v |
|
| 10 |
|
incom |
|
| 11 |
10 6
|
eqtrid |
|
| 12 |
8 2 3 5 4 11 9
|
metnrmlem2 |
|
| 13 |
12
|
simpld |
|
| 14 |
1 2 3 4 5 6 7
|
metnrmlem2 |
|
| 15 |
14
|
simpld |
|
| 16 |
12
|
simprd |
|
| 17 |
14
|
simprd |
|
| 18 |
9
|
ineq1i |
|
| 19 |
|
iunin1 |
|
| 20 |
18 19
|
eqtr4i |
|
| 21 |
7
|
ineq2i |
|
| 22 |
|
iunin2 |
|
| 23 |
21 22
|
eqtr4i |
|
| 24 |
3
|
adantr |
|
| 25 |
|
eqid |
|
| 26 |
25
|
cldss |
|
| 27 |
4 26
|
syl |
|
| 28 |
2
|
mopnuni |
|
| 29 |
3 28
|
syl |
|
| 30 |
27 29
|
sseqtrrd |
|
| 31 |
30
|
sselda |
|
| 32 |
31
|
adantrr |
|
| 33 |
25
|
cldss |
|
| 34 |
5 33
|
syl |
|
| 35 |
34 29
|
sseqtrrd |
|
| 36 |
35
|
sselda |
|
| 37 |
36
|
adantrl |
|
| 38 |
8 2 3 5 4 11
|
metnrmlem1a |
|
| 39 |
38
|
simprd |
|
| 40 |
39
|
adantrr |
|
| 41 |
40
|
rphalfcld |
|
| 42 |
41
|
rpxrd |
|
| 43 |
1 2 3 4 5 6
|
metnrmlem1a |
|
| 44 |
43
|
adantrl |
|
| 45 |
44
|
simprd |
|
| 46 |
45
|
rphalfcld |
|
| 47 |
46
|
rpxrd |
|
| 48 |
40
|
rpred |
|
| 49 |
48
|
rehalfcld |
|
| 50 |
45
|
rpred |
|
| 51 |
50
|
rehalfcld |
|
| 52 |
49 51
|
rexaddd |
|
| 53 |
48
|
recnd |
|
| 54 |
50
|
recnd |
|
| 55 |
|
2cnd |
|
| 56 |
|
2ne0 |
|
| 57 |
56
|
a1i |
|
| 58 |
53 54 55 57
|
divdird |
|
| 59 |
52 58
|
eqtr4d |
|
| 60 |
8 2 3 5 4 11
|
metnrmlem1 |
|
| 61 |
60
|
ancom2s |
|
| 62 |
|
xmetsym |
|
| 63 |
24 37 32 62
|
syl3anc |
|
| 64 |
61 63
|
breqtrd |
|
| 65 |
1 2 3 4 5 6
|
metnrmlem1 |
|
| 66 |
40
|
rpxrd |
|
| 67 |
45
|
rpxrd |
|
| 68 |
|
xmetcl |
|
| 69 |
24 32 37 68
|
syl3anc |
|
| 70 |
|
xle2add |
|
| 71 |
66 67 69 69 70
|
syl22anc |
|
| 72 |
64 65 71
|
mp2and |
|
| 73 |
48 50
|
readdcld |
|
| 74 |
73
|
recnd |
|
| 75 |
74 55 57
|
divcan2d |
|
| 76 |
|
2re |
|
| 77 |
73
|
rehalfcld |
|
| 78 |
|
rexmul |
|
| 79 |
76 77 78
|
sylancr |
|
| 80 |
48 50
|
rexaddd |
|
| 81 |
75 79 80
|
3eqtr4d |
|
| 82 |
|
x2times |
|
| 83 |
69 82
|
syl |
|
| 84 |
72 81 83
|
3brtr4d |
|
| 85 |
77
|
rexrd |
|
| 86 |
|
2rp |
|
| 87 |
86
|
a1i |
|
| 88 |
|
xlemul2 |
|
| 89 |
85 69 87 88
|
syl3anc |
|
| 90 |
84 89
|
mpbird |
|
| 91 |
59 90
|
eqbrtrd |
|
| 92 |
|
bldisj |
|
| 93 |
24 32 37 42 47 91 92
|
syl33anc |
|
| 94 |
|
eqimss |
|
| 95 |
93 94
|
syl |
|
| 96 |
95
|
anassrs |
|
| 97 |
96
|
ralrimiva |
|
| 98 |
|
iunss |
|
| 99 |
97 98
|
sylibr |
|
| 100 |
23 99
|
eqsstrid |
|
| 101 |
100
|
ralrimiva |
|
| 102 |
|
iunss |
|
| 103 |
101 102
|
sylibr |
|
| 104 |
|
ss0 |
|
| 105 |
103 104
|
syl |
|
| 106 |
20 105
|
eqtrid |
|
| 107 |
|
sseq2 |
|
| 108 |
|
ineq1 |
|
| 109 |
108
|
eqeq1d |
|
| 110 |
107 109
|
3anbi13d |
|
| 111 |
|
sseq2 |
|
| 112 |
|
ineq2 |
|
| 113 |
112
|
eqeq1d |
|
| 114 |
111 113
|
3anbi23d |
|
| 115 |
110 114
|
rspc2ev |
|
| 116 |
13 15 16 17 106 115
|
syl113anc |
|