Metamath Proof Explorer


Theorem mpllsslem

Description: If A is an ideal of subsets (a nonempty collection closed under subset and binary union) of the set D of finite bags (the primary applications being A = Fin and A = ~P B for some B ), then the set of all power series whose coefficient functions are supported on an element of A is a linear subspace of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015) (Revised by AV, 16-Jul-2019)

Ref Expression
Hypotheses mplsubglem.s S=ImPwSerR
mplsubglem.b B=BaseS
mplsubglem.z 0˙=0R
mplsubglem.d D=f0I|f-1Fin
mplsubglem.i φIW
mplsubglem.0 φA
mplsubglem.a φxAyAxyA
mplsubglem.y φxAyxyA
mplsubglem.u φU=gB|gsupp0˙A
mpllsslem.r φRRing
Assertion mpllsslem φULSubSpS

Proof

Step Hyp Ref Expression
1 mplsubglem.s S=ImPwSerR
2 mplsubglem.b B=BaseS
3 mplsubglem.z 0˙=0R
4 mplsubglem.d D=f0I|f-1Fin
5 mplsubglem.i φIW
6 mplsubglem.0 φA
7 mplsubglem.a φxAyAxyA
8 mplsubglem.y φxAyxyA
9 mplsubglem.u φU=gB|gsupp0˙A
10 mpllsslem.r φRRing
11 1 5 10 psrsca φR=ScalarS
12 eqidd φBaseR=BaseR
13 2 a1i φB=BaseS
14 eqidd φ+S=+S
15 eqidd φS=S
16 eqidd φLSubSpS=LSubSpS
17 ringgrp RRingRGrp
18 10 17 syl φRGrp
19 1 2 3 4 5 6 7 8 9 18 mplsubglem φUSubGrpS
20 2 subgss USubGrpSUB
21 19 20 syl φUB
22 eqid 0S=0S
23 22 subg0cl USubGrpS0SU
24 ne0i 0SUU
25 19 23 24 3syl φU
26 19 adantr φuBaseRvUwUUSubGrpS
27 eqid S=S
28 eqid BaseR=BaseR
29 10 adantr φuBaseRvURRing
30 simprl φuBaseRvUuBaseR
31 simprr φuBaseRvUvU
32 9 adantr φuBaseRvUU=gB|gsupp0˙A
33 32 eleq2d φuBaseRvUvUvgB|gsupp0˙A
34 oveq1 g=vgsupp0˙=vsupp0˙
35 34 eleq1d g=vgsupp0˙Avsupp0˙A
36 35 elrab vgB|gsupp0˙AvBvsupp0˙A
37 33 36 bitrdi φuBaseRvUvUvBvsupp0˙A
38 31 37 mpbid φuBaseRvUvBvsupp0˙A
39 38 simpld φuBaseRvUvB
40 1 27 28 2 29 30 39 psrvscacl φuBaseRvUuSvB
41 ovex uSvsupp0˙V
42 41 a1i φuBaseRvUuSvsupp0˙V
43 sseq2 x=vsupp0˙yxyvsupp0˙
44 43 imbi1d x=vsupp0˙yxyAyvsupp0˙yA
45 44 albidv x=vsupp0˙yyxyAyyvsupp0˙yA
46 8 expr φxAyxyA
47 46 alrimiv φxAyyxyA
48 47 ralrimiva φxAyyxyA
49 48 adantr φuBaseRvUxAyyxyA
50 38 simprd φuBaseRvUvsupp0˙A
51 45 49 50 rspcdva φuBaseRvUyyvsupp0˙yA
52 1 28 4 2 40 psrelbas φuBaseRvUuSv:DBaseR
53 eqid R=R
54 30 adantr φuBaseRvUkDsupp0˙vuBaseR
55 39 adantr φuBaseRvUkDsupp0˙vvB
56 eldifi kDsupp0˙vkD
57 56 adantl φuBaseRvUkDsupp0˙vkD
58 1 27 28 2 53 4 54 55 57 psrvscaval φuBaseRvUkDsupp0˙vuSvk=uRvk
59 1 28 4 2 39 psrelbas φuBaseRvUv:DBaseR
60 ssidd φuBaseRvUvsupp0˙vsupp0˙
61 ovex 0IV
62 4 61 rabex2 DV
63 62 a1i φuBaseRvUDV
64 3 fvexi 0˙V
65 64 a1i φuBaseRvU0˙V
66 59 60 63 65 suppssr φuBaseRvUkDsupp0˙vvk=0˙
67 66 oveq2d φuBaseRvUkDsupp0˙vuRvk=uR0˙
68 28 53 3 ringrz RRinguBaseRuR0˙=0˙
69 10 30 68 syl2an2r φuBaseRvUuR0˙=0˙
70 69 adantr φuBaseRvUkDsupp0˙vuR0˙=0˙
71 58 67 70 3eqtrd φuBaseRvUkDsupp0˙vuSvk=0˙
72 52 71 suppss φuBaseRvUuSvsupp0˙vsupp0˙
73 sseq1 y=uSvsupp0˙yvsupp0˙uSvsupp0˙vsupp0˙
74 eleq1 y=uSvsupp0˙yAuSvsupp0˙A
75 73 74 imbi12d y=uSvsupp0˙yvsupp0˙yAuSvsupp0˙vsupp0˙uSvsupp0˙A
76 75 spcgv uSvsupp0˙Vyyvsupp0˙yAuSvsupp0˙vsupp0˙uSvsupp0˙A
77 42 51 72 76 syl3c φuBaseRvUuSvsupp0˙A
78 32 eleq2d φuBaseRvUuSvUuSvgB|gsupp0˙A
79 oveq1 g=uSvgsupp0˙=uSvsupp0˙
80 79 eleq1d g=uSvgsupp0˙AuSvsupp0˙A
81 80 elrab uSvgB|gsupp0˙AuSvBuSvsupp0˙A
82 78 81 bitrdi φuBaseRvUuSvUuSvBuSvsupp0˙A
83 40 77 82 mpbir2and φuBaseRvUuSvU
84 83 3adantr3 φuBaseRvUwUuSvU
85 simpr3 φuBaseRvUwUwU
86 eqid +S=+S
87 86 subgcl USubGrpSuSvUwUuSv+SwU
88 26 84 85 87 syl3anc φuBaseRvUwUuSv+SwU
89 11 12 13 14 15 16 21 25 88 islssd φULSubSpS