| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplsubglem.s |  | 
						
							| 2 |  | mplsubglem.b |  | 
						
							| 3 |  | mplsubglem.z |  | 
						
							| 4 |  | mplsubglem.d |  | 
						
							| 5 |  | mplsubglem.i |  | 
						
							| 6 |  | mplsubglem.0 |  | 
						
							| 7 |  | mplsubglem.a |  | 
						
							| 8 |  | mplsubglem.y |  | 
						
							| 9 |  | mplsubglem.u |  | 
						
							| 10 |  | mpllsslem.r |  | 
						
							| 11 | 1 5 10 | psrsca |  | 
						
							| 12 |  | eqidd |  | 
						
							| 13 | 2 | a1i |  | 
						
							| 14 |  | eqidd |  | 
						
							| 15 |  | eqidd |  | 
						
							| 16 |  | eqidd |  | 
						
							| 17 |  | ringgrp |  | 
						
							| 18 | 10 17 | syl |  | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 18 | mplsubglem |  | 
						
							| 20 | 2 | subgss |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 22 | subg0cl |  | 
						
							| 24 |  | ne0i |  | 
						
							| 25 | 19 23 24 | 3syl |  | 
						
							| 26 | 19 | adantr |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 10 | adantr |  | 
						
							| 30 |  | simprl |  | 
						
							| 31 |  | simprr |  | 
						
							| 32 | 9 | adantr |  | 
						
							| 33 | 32 | eleq2d |  | 
						
							| 34 |  | oveq1 |  | 
						
							| 35 | 34 | eleq1d |  | 
						
							| 36 | 35 | elrab |  | 
						
							| 37 | 33 36 | bitrdi |  | 
						
							| 38 | 31 37 | mpbid |  | 
						
							| 39 | 38 | simpld |  | 
						
							| 40 | 1 27 28 2 29 30 39 | psrvscacl |  | 
						
							| 41 |  | ovex |  | 
						
							| 42 | 41 | a1i |  | 
						
							| 43 |  | sseq2 |  | 
						
							| 44 | 43 | imbi1d |  | 
						
							| 45 | 44 | albidv |  | 
						
							| 46 | 8 | expr |  | 
						
							| 47 | 46 | alrimiv |  | 
						
							| 48 | 47 | ralrimiva |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 | 38 | simprd |  | 
						
							| 51 | 45 49 50 | rspcdva |  | 
						
							| 52 | 1 28 4 2 40 | psrelbas |  | 
						
							| 53 |  | eqid |  | 
						
							| 54 | 30 | adantr |  | 
						
							| 55 | 39 | adantr |  | 
						
							| 56 |  | eldifi |  | 
						
							| 57 | 56 | adantl |  | 
						
							| 58 | 1 27 28 2 53 4 54 55 57 | psrvscaval |  | 
						
							| 59 | 1 28 4 2 39 | psrelbas |  | 
						
							| 60 |  | ssidd |  | 
						
							| 61 |  | ovex |  | 
						
							| 62 | 4 61 | rabex2 |  | 
						
							| 63 | 62 | a1i |  | 
						
							| 64 | 3 | fvexi |  | 
						
							| 65 | 64 | a1i |  | 
						
							| 66 | 59 60 63 65 | suppssr |  | 
						
							| 67 | 66 | oveq2d |  | 
						
							| 68 | 28 53 3 | ringrz |  | 
						
							| 69 | 10 30 68 | syl2an2r |  | 
						
							| 70 | 69 | adantr |  | 
						
							| 71 | 58 67 70 | 3eqtrd |  | 
						
							| 72 | 52 71 | suppss |  | 
						
							| 73 |  | sseq1 |  | 
						
							| 74 |  | eleq1 |  | 
						
							| 75 | 73 74 | imbi12d |  | 
						
							| 76 | 75 | spcgv |  | 
						
							| 77 | 42 51 72 76 | syl3c |  | 
						
							| 78 | 32 | eleq2d |  | 
						
							| 79 |  | oveq1 |  | 
						
							| 80 | 79 | eleq1d |  | 
						
							| 81 | 80 | elrab |  | 
						
							| 82 | 78 81 | bitrdi |  | 
						
							| 83 | 40 77 82 | mpbir2and |  | 
						
							| 84 | 83 | 3adantr3 |  | 
						
							| 85 |  | simpr3 |  | 
						
							| 86 |  | eqid |  | 
						
							| 87 | 86 | subgcl |  | 
						
							| 88 | 26 84 85 87 | syl3anc |  | 
						
							| 89 | 11 12 13 14 15 16 21 25 88 | islssd |  |