Metamath Proof Explorer


Theorem mumul

Description: The Möbius function is a multiplicative function. This is one of the primary interests of the Möbius function as an arithmetic function. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion mumul ABAgcdB=1μAB=μAμB

Proof

Step Hyp Ref Expression
1 simpl2 ABAgcdB=1μA=0B
2 mucl BμB
3 1 2 syl ABAgcdB=1μA=0μB
4 3 zcnd ABAgcdB=1μA=0μB
5 4 mul02d ABAgcdB=1μA=00μB=0
6 simpr ABAgcdB=1μA=0μA=0
7 6 oveq1d ABAgcdB=1μA=0μAμB=0μB
8 mumullem1 ABμA=0μAB=0
9 8 3adantl3 ABAgcdB=1μA=0μAB=0
10 5 7 9 3eqtr4rd ABAgcdB=1μA=0μAB=μAμB
11 simpl1 ABAgcdB=1μB=0A
12 mucl AμA
13 11 12 syl ABAgcdB=1μB=0μA
14 13 zcnd ABAgcdB=1μB=0μA
15 14 mul01d ABAgcdB=1μB=0μA0=0
16 simpr ABAgcdB=1μB=0μB=0
17 16 oveq2d ABAgcdB=1μB=0μAμB=μA0
18 nncn AA
19 nncn BB
20 mulcom ABAB=BA
21 18 19 20 syl2an ABAB=BA
22 21 fveq2d ABμAB=μBA
23 22 adantr ABμB=0μAB=μBA
24 mumullem1 BAμB=0μBA=0
25 24 ancom1s ABμB=0μBA=0
26 23 25 eqtrd ABμB=0μAB=0
27 26 3adantl3 ABAgcdB=1μB=0μAB=0
28 15 17 27 3eqtr4rd ABAgcdB=1μB=0μAB=μAμB
29 simpl1 ABAgcdB=1μA0μB0A
30 simpl2 ABAgcdB=1μA0μB0B
31 29 30 nnmulcld ABAgcdB=1μA0μB0AB
32 mumullem2 ABAgcdB=1μA0μB0μAB0
33 muval2 ABμAB0μAB=1p|pAB
34 31 32 33 syl2anc ABAgcdB=1μA0μB0μAB=1p|pAB
35 neg1cn 1
36 35 a1i ABAgcdB=1μA0μB01
37 fzfi 1BFin
38 prmssnn
39 rabss2 p|pBp|pB
40 38 39 ax-mp p|pBp|pB
41 dvdsssfz1 Bp|pB1B
42 30 41 syl ABAgcdB=1μA0μB0p|pB1B
43 40 42 sstrid ABAgcdB=1μA0μB0p|pB1B
44 ssfi 1BFinp|pB1Bp|pBFin
45 37 43 44 sylancr ABAgcdB=1μA0μB0p|pBFin
46 hashcl p|pBFinp|pB0
47 45 46 syl ABAgcdB=1μA0μB0p|pB0
48 fzfi 1AFin
49 rabss2 p|pAp|pA
50 38 49 ax-mp p|pAp|pA
51 dvdsssfz1 Ap|pA1A
52 29 51 syl ABAgcdB=1μA0μB0p|pA1A
53 50 52 sstrid ABAgcdB=1μA0μB0p|pA1A
54 ssfi 1AFinp|pA1Ap|pAFin
55 48 53 54 sylancr ABAgcdB=1μA0μB0p|pAFin
56 hashcl p|pAFinp|pA0
57 55 56 syl ABAgcdB=1μA0μB0p|pA0
58 36 47 57 expaddd ABAgcdB=1μA0μB01p|pA+p|pB=1p|pA1p|pB
59 simpr ABAgcdB=1μA0μB0pp
60 simpl1 ABAgcdB=1pA
61 60 nnzd ABAgcdB=1pA
62 61 adantlr ABAgcdB=1μA0μB0pA
63 simpl2 ABAgcdB=1pB
64 63 nnzd ABAgcdB=1pB
65 64 adantlr ABAgcdB=1μA0μB0pB
66 euclemma pABpABpApB
67 59 62 65 66 syl3anc ABAgcdB=1μA0μB0ppABpApB
68 67 rabbidva ABAgcdB=1μA0μB0p|pAB=p|pApB
69 unrab p|pAp|pB=p|pApB
70 68 69 eqtr4di ABAgcdB=1μA0μB0p|pAB=p|pAp|pB
71 70 fveq2d ABAgcdB=1μA0μB0p|pAB=p|pAp|pB
72 inrab p|pAp|pB=p|pApB
73 nprmdvds1 p¬p1
74 73 adantl ABAgcdB=1μA0μB0p¬p1
75 prmz pp
76 75 adantl ABAgcdB=1μA0μB0pp
77 dvdsgcd pABpApBpAgcdB
78 76 62 65 77 syl3anc ABAgcdB=1μA0μB0ppApBpAgcdB
79 simpll3 ABAgcdB=1μA0μB0pAgcdB=1
80 79 breq2d ABAgcdB=1μA0μB0ppAgcdBp1
81 78 80 sylibd ABAgcdB=1μA0μB0ppApBp1
82 74 81 mtod ABAgcdB=1μA0μB0p¬pApB
83 82 ralrimiva ABAgcdB=1μA0μB0p¬pApB
84 rabeq0 p|pApB=p¬pApB
85 83 84 sylibr ABAgcdB=1μA0μB0p|pApB=
86 72 85 eqtrid ABAgcdB=1μA0μB0p|pAp|pB=
87 hashun p|pAFinp|pBFinp|pAp|pB=p|pAp|pB=p|pA+p|pB
88 55 45 86 87 syl3anc ABAgcdB=1μA0μB0p|pAp|pB=p|pA+p|pB
89 71 88 eqtrd ABAgcdB=1μA0μB0p|pAB=p|pA+p|pB
90 89 oveq2d ABAgcdB=1μA0μB01p|pAB=1p|pA+p|pB
91 simprl ABAgcdB=1μA0μB0μA0
92 muval2 AμA0μA=1p|pA
93 29 91 92 syl2anc ABAgcdB=1μA0μB0μA=1p|pA
94 simprr ABAgcdB=1μA0μB0μB0
95 muval2 BμB0μB=1p|pB
96 30 94 95 syl2anc ABAgcdB=1μA0μB0μB=1p|pB
97 93 96 oveq12d ABAgcdB=1μA0μB0μAμB=1p|pA1p|pB
98 58 90 97 3eqtr4rd ABAgcdB=1μA0μB0μAμB=1p|pAB
99 34 98 eqtr4d ABAgcdB=1μA0μB0μAB=μAμB
100 10 28 99 pm2.61da2ne ABAgcdB=1μAB=μAμB