Metamath Proof Explorer


Theorem sqff1o

Description: There is a bijection from the squarefree divisors of a number N to the powerset of the prime divisors of N . Among other things, this implies that a number has 2 ^ k squarefree divisors where k is the number of prime divisors, and a squarefree number has 2 ^ k divisors (because all divisors of a squarefree number are squarefree). The inverse function to F takes the product of all the primes in some subset of prime divisors of N . (Contributed by Mario Carneiro, 1-Jul-2015)

Ref Expression
Hypotheses sqff1o.1 S=x|μx0xN
sqff1o.2 F=nSp|pn
sqff1o.3 G=npppCntn
Assertion sqff1o NF:S1-1 onto𝒫p|pN

Proof

Step Hyp Ref Expression
1 sqff1o.1 S=x|μx0xN
2 sqff1o.2 F=nSp|pn
3 sqff1o.3 G=npppCntn
4 fveq2 x=nμx=μn
5 4 neeq1d x=nμx0μn0
6 breq1 x=nxNnN
7 5 6 anbi12d x=nμx0xNμn0nN
8 7 1 elrab2 nSnμn0nN
9 8 simprbi nSμn0nN
10 9 simprd nSnN
11 10 ad2antlr NnSpnN
12 prmz pp
13 12 adantl NnSpp
14 simplr NnSpnS
15 14 8 sylib NnSpnμn0nN
16 15 simpld NnSpn
17 16 nnzd NnSpn
18 nnz NN
19 18 ad2antrr NnSpN
20 dvdstr pnNpnnNpN
21 13 17 19 20 syl3anc NnSppnnNpN
22 11 21 mpan2d NnSppnpN
23 22 ss2rabdv NnSp|pnp|pN
24 prmex V
25 24 rabex p|pnV
26 25 elpw p|pn𝒫p|pNp|pnp|pN
27 23 26 sylibr NnSp|pn𝒫p|pN
28 cnveq y=kifkz10y-1=kifkz10-1
29 28 imaeq1d y=kifkz10y-1=kifkz10-1
30 29 eleq1d y=kifkz10y-1Finkifkz10-1Fin
31 1nn0 10
32 0nn0 00
33 31 32 ifcli ifkz100
34 33 rgenw kifkz100
35 eqid kifkz10=kifkz10
36 35 fmpt kifkz100kifkz10:0
37 34 36 mpbi kifkz10:0
38 37 a1i Nz𝒫p|pNkifkz10:0
39 nn0ex 0V
40 39 24 elmap kifkz100kifkz10:0
41 38 40 sylibr Nz𝒫p|pNkifkz100
42 fzfi 1NFin
43 ffn kifkz10:0kifkz10Fn
44 elpreima kifkz10Fnxkifkz10-1xkifkz10x
45 37 43 44 mp2b xkifkz10-1xkifkz10x
46 elequ1 k=xkzxz
47 46 ifbid k=xifkz10=ifxz10
48 31 32 ifcli ifxz100
49 48 elexi ifxz10V
50 47 35 49 fvmpt xkifkz10x=ifxz10
51 50 eleq1d xkifkz10xifxz10
52 51 biimpa xkifkz10xifxz10
53 45 52 sylbi xkifkz10-1ifxz10
54 0nnn ¬0
55 iffalse ¬xzifxz10=0
56 55 eleq1d ¬xzifxz100
57 54 56 mtbiri ¬xz¬ifxz10
58 57 con4i ifxz10xz
59 53 58 syl xkifkz10-1xz
60 59 ssriv kifkz10-1z
61 elpwi z𝒫p|pNzp|pN
62 61 adantl Nz𝒫p|pNzp|pN
63 prmssnn
64 rabss2 p|pNp|pN
65 63 64 ax-mp p|pNp|pN
66 dvdsssfz1 Np|pN1N
67 66 adantr Nz𝒫p|pNp|pN1N
68 65 67 sstrid Nz𝒫p|pNp|pN1N
69 62 68 sstrd Nz𝒫p|pNz1N
70 60 69 sstrid Nz𝒫p|pNkifkz10-11N
71 ssfi 1NFinkifkz10-11Nkifkz10-1Fin
72 42 70 71 sylancr Nz𝒫p|pNkifkz10-1Fin
73 30 41 72 elrabd Nz𝒫p|pNkifkz10y0|y-1Fin
74 eqid y0|y-1Fin=y0|y-1Fin
75 3 74 1arith G:1-1 ontoy0|y-1Fin
76 f1ocnv G:1-1 ontoy0|y-1FinG-1:y0|y-1Fin1-1 onto
77 f1of G-1:y0|y-1Fin1-1 ontoG-1:y0|y-1Fin
78 75 76 77 mp2b G-1:y0|y-1Fin
79 78 ffvelcdmi kifkz10y0|y-1FinG-1kifkz10
80 73 79 syl Nz𝒫p|pNG-1kifkz10
81 f1ocnvfv2 G:1-1 ontoy0|y-1Finkifkz10y0|y-1FinGG-1kifkz10=kifkz10
82 75 73 81 sylancr Nz𝒫p|pNGG-1kifkz10=kifkz10
83 3 1arithlem1 G-1kifkz10GG-1kifkz10=pppCntG-1kifkz10
84 80 83 syl Nz𝒫p|pNGG-1kifkz10=pppCntG-1kifkz10
85 82 84 eqtr3d Nz𝒫p|pNkifkz10=pppCntG-1kifkz10
86 85 fveq1d Nz𝒫p|pNkifkz10q=pppCntG-1kifkz10q
87 elequ1 k=qkzqz
88 87 ifbid k=qifkz10=ifqz10
89 31 32 ifcli ifqz100
90 89 elexi ifqz10V
91 88 35 90 fvmpt qkifkz10q=ifqz10
92 86 91 sylan9req Nz𝒫p|pNqpppCntG-1kifkz10q=ifqz10
93 oveq1 p=qppCntG-1kifkz10=qpCntG-1kifkz10
94 eqid pppCntG-1kifkz10=pppCntG-1kifkz10
95 ovex qpCntG-1kifkz10V
96 93 94 95 fvmpt qpppCntG-1kifkz10q=qpCntG-1kifkz10
97 96 adantl Nz𝒫p|pNqpppCntG-1kifkz10q=qpCntG-1kifkz10
98 92 97 eqtr3d Nz𝒫p|pNqifqz10=qpCntG-1kifkz10
99 breq1 1=ifqz1011ifqz101
100 breq1 0=ifqz1001ifqz101
101 1le1 11
102 0le1 01
103 99 100 101 102 keephyp ifqz101
104 98 103 eqbrtrrdi Nz𝒫p|pNqqpCntG-1kifkz101
105 104 ralrimiva Nz𝒫p|pNqqpCntG-1kifkz101
106 issqf G-1kifkz10μG-1kifkz100qqpCntG-1kifkz101
107 80 106 syl Nz𝒫p|pNμG-1kifkz100qqpCntG-1kifkz101
108 105 107 mpbird Nz𝒫p|pNμG-1kifkz100
109 iftrue qzifqz10=1
110 109 adantl Nz𝒫p|pNqzifqz10=1
111 62 sselda Nz𝒫p|pNqzqp|pN
112 breq1 p=qpNqN
113 112 elrab qp|pNqqN
114 111 113 sylib Nz𝒫p|pNqzqqN
115 114 simprd Nz𝒫p|pNqzqN
116 114 simpld Nz𝒫p|pNqzq
117 simpll Nz𝒫p|pNqzN
118 pcelnn qNqpCntNqN
119 116 117 118 syl2anc Nz𝒫p|pNqzqpCntNqN
120 115 119 mpbird Nz𝒫p|pNqzqpCntN
121 120 nnge1d Nz𝒫p|pNqz1qpCntN
122 110 121 eqbrtrd Nz𝒫p|pNqzifqz10qpCntN
123 122 ex Nz𝒫p|pNqzifqz10qpCntN
124 123 adantr Nz𝒫p|pNqqzifqz10qpCntN
125 simpr Nz𝒫p|pNqq
126 18 ad2antrr Nz𝒫p|pNqN
127 pcge0 qN0qpCntN
128 125 126 127 syl2anc Nz𝒫p|pNq0qpCntN
129 iffalse ¬qzifqz10=0
130 129 breq1d ¬qzifqz10qpCntN0qpCntN
131 128 130 syl5ibrcom Nz𝒫p|pNq¬qzifqz10qpCntN
132 124 131 pm2.61d Nz𝒫p|pNqifqz10qpCntN
133 98 132 eqbrtrrd Nz𝒫p|pNqqpCntG-1kifkz10qpCntN
134 133 ralrimiva Nz𝒫p|pNqqpCntG-1kifkz10qpCntN
135 80 nnzd Nz𝒫p|pNG-1kifkz10
136 18 adantr Nz𝒫p|pNN
137 pc2dvds G-1kifkz10NG-1kifkz10NqqpCntG-1kifkz10qpCntN
138 135 136 137 syl2anc Nz𝒫p|pNG-1kifkz10NqqpCntG-1kifkz10qpCntN
139 134 138 mpbird Nz𝒫p|pNG-1kifkz10N
140 108 139 jca Nz𝒫p|pNμG-1kifkz100G-1kifkz10N
141 fveq2 x=G-1kifkz10μx=μG-1kifkz10
142 141 neeq1d x=G-1kifkz10μx0μG-1kifkz100
143 breq1 x=G-1kifkz10xNG-1kifkz10N
144 142 143 anbi12d x=G-1kifkz10μx0xNμG-1kifkz100G-1kifkz10N
145 144 1 elrab2 G-1kifkz10SG-1kifkz10μG-1kifkz100G-1kifkz10N
146 80 140 145 sylanbrc Nz𝒫p|pNG-1kifkz10S
147 eqcom n=G-1kifkz10G-1kifkz10=n
148 8 simplbi nSn
149 148 ad2antrl NnSz𝒫p|pNn
150 24 mptex pppCntnV
151 3 fvmpt2 npppCntnVGn=pppCntn
152 149 150 151 sylancl NnSz𝒫p|pNGn=pppCntn
153 152 eqeq1d NnSz𝒫p|pNGn=kifkz10pppCntn=kifkz10
154 75 a1i NnSz𝒫p|pNG:1-1 ontoy0|y-1Fin
155 73 adantrl NnSz𝒫p|pNkifkz10y0|y-1Fin
156 f1ocnvfvb G:1-1 ontoy0|y-1Finnkifkz10y0|y-1FinGn=kifkz10G-1kifkz10=n
157 154 149 155 156 syl3anc NnSz𝒫p|pNGn=kifkz10G-1kifkz10=n
158 24 a1i NnSz𝒫p|pNV
159 0cnd NnSz𝒫p|pN0
160 1cnd NnSz𝒫p|pN1
161 0ne1 01
162 161 a1i NnSz𝒫p|pN01
163 158 159 160 162 pw2f1olem NnSz𝒫p|pNz𝒫pppCntn=kifkz10pppCntn01z=pppCntn-11
164 ssrab2 p|pN
165 164 sspwi 𝒫p|pN𝒫
166 simprr NnSz𝒫p|pNz𝒫p|pN
167 165 166 sselid NnSz𝒫p|pNz𝒫
168 167 biantrurd NnSz𝒫p|pNpppCntn=kifkz10z𝒫pppCntn=kifkz10
169 id pp
170 148 adantl NnSn
171 pccl pnppCntn0
172 169 170 171 syl2anr NnSpppCntn0
173 elnn0 ppCntn0ppCntnppCntn=0
174 172 173 sylib NnSpppCntnppCntn=0
175 174 orcomd NnSpppCntn=0ppCntn
176 9 simpld nSμn0
177 176 adantl NnSμn0
178 issqf nμn0pppCntn1
179 170 178 syl NnSμn0pppCntn1
180 177 179 mpbid NnSpppCntn1
181 180 r19.21bi NnSpppCntn1
182 nnle1eq1 ppCntnppCntn1ppCntn=1
183 181 182 syl5ibcom NnSpppCntnppCntn=1
184 183 orim2d NnSpppCntn=0ppCntnppCntn=0ppCntn=1
185 175 184 mpd NnSpppCntn=0ppCntn=1
186 ovex ppCntnV
187 186 elpr ppCntn01ppCntn=0ppCntn=1
188 185 187 sylibr NnSpppCntn01
189 188 fmpttd NnSpppCntn:01
190 189 adantrr NnSz𝒫p|pNpppCntn:01
191 prex 01V
192 191 24 elmap pppCntn01pppCntn:01
193 190 192 sylibr NnSz𝒫p|pNpppCntn01
194 193 biantrurd NnSz𝒫p|pNz=pppCntn-11pppCntn01z=pppCntn-11
195 163 168 194 3bitr4d NnSz𝒫p|pNpppCntn=kifkz10z=pppCntn-11
196 eqid pppCntn=pppCntn
197 196 mptiniseg 10pppCntn-11=p|ppCntn=1
198 31 197 ax-mp pppCntn-11=p|ppCntn=1
199 id ppCntn=1ppCntn=1
200 1nn 1
201 199 200 eqeltrdi ppCntn=1ppCntn
202 201 183 impbid2 NnSpppCntn=1ppCntn
203 simpr NnSpp
204 pcelnn pnppCntnpn
205 203 16 204 syl2anc NnSpppCntnpn
206 202 205 bitrd NnSpppCntn=1pn
207 206 rabbidva NnSp|ppCntn=1=p|pn
208 207 adantrr NnSz𝒫p|pNp|ppCntn=1=p|pn
209 198 208 eqtrid NnSz𝒫p|pNpppCntn-11=p|pn
210 209 eqeq2d NnSz𝒫p|pNz=pppCntn-11z=p|pn
211 195 210 bitrd NnSz𝒫p|pNpppCntn=kifkz10z=p|pn
212 153 157 211 3bitr3d NnSz𝒫p|pNG-1kifkz10=nz=p|pn
213 147 212 bitrid NnSz𝒫p|pNn=G-1kifkz10z=p|pn
214 2 27 146 213 f1o2d NF:S1-1 onto𝒫p|pN