Metamath Proof Explorer


Theorem natpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same natural transformations. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses fucpropd.1 φHom𝑓A=Hom𝑓B
fucpropd.2 φcomp𝑓A=comp𝑓B
fucpropd.3 φHom𝑓C=Hom𝑓D
fucpropd.4 φcomp𝑓C=comp𝑓D
fucpropd.a φACat
fucpropd.b φBCat
fucpropd.c φCCat
fucpropd.d φDCat
Assertion natpropd φANatC=BNatD

Proof

Step Hyp Ref Expression
1 fucpropd.1 φHom𝑓A=Hom𝑓B
2 fucpropd.2 φcomp𝑓A=comp𝑓B
3 fucpropd.3 φHom𝑓C=Hom𝑓D
4 fucpropd.4 φcomp𝑓C=comp𝑓D
5 fucpropd.a φACat
6 fucpropd.b φBCat
7 fucpropd.c φCCat
8 fucpropd.d φDCat
9 1 2 3 4 5 6 7 8 funcpropd φAFuncC=BFuncD
10 9 adantr φfAFuncCAFuncC=BFuncD
11 nfv rφfAFuncCgAFuncC
12 nfcsb1v _r1stf/r1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
13 12 a1i φfAFuncCgAFuncC_r1stf/r1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
14 fvexd φfAFuncCgAFuncC1stfV
15 nfv sφfAFuncCgAFuncCr=1stf
16 nfcsb1v _s1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
17 16 a1i φfAFuncCgAFuncCr=1stf_s1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
18 fvexd φfAFuncCgAFuncCr=1stf1stgV
19 eqid BaseC=BaseC
20 eqid HomC=HomC
21 eqid HomD=HomD
22 3 ad4antr φfAFuncCgAFuncCr=1stfs=1stgxBaseAHom𝑓C=Hom𝑓D
23 eqid BaseA=BaseA
24 simplr φfAFuncCgAFuncCr=1stfs=1stgr=1stf
25 relfunc RelAFuncC
26 simpllr φfAFuncCgAFuncCr=1stfs=1stgfAFuncCgAFuncC
27 26 simpld φfAFuncCgAFuncCr=1stfs=1stgfAFuncC
28 1st2ndbr RelAFuncCfAFuncC1stfAFuncC2ndf
29 25 27 28 sylancr φfAFuncCgAFuncCr=1stfs=1stg1stfAFuncC2ndf
30 24 29 eqbrtrd φfAFuncCgAFuncCr=1stfs=1stgrAFuncC2ndf
31 23 19 30 funcf1 φfAFuncCgAFuncCr=1stfs=1stgr:BaseABaseC
32 31 ffvelcdmda φfAFuncCgAFuncCr=1stfs=1stgxBaseArxBaseC
33 simpr φfAFuncCgAFuncCr=1stfs=1stgs=1stg
34 26 simprd φfAFuncCgAFuncCr=1stfs=1stggAFuncC
35 1st2ndbr RelAFuncCgAFuncC1stgAFuncC2ndg
36 25 34 35 sylancr φfAFuncCgAFuncCr=1stfs=1stg1stgAFuncC2ndg
37 33 36 eqbrtrd φfAFuncCgAFuncCr=1stfs=1stgsAFuncC2ndg
38 23 19 37 funcf1 φfAFuncCgAFuncCr=1stfs=1stgs:BaseABaseC
39 38 ffvelcdmda φfAFuncCgAFuncCr=1stfs=1stgxBaseAsxBaseC
40 19 20 21 22 32 39 homfeqval φfAFuncCgAFuncCr=1stfs=1stgxBaseArxHomCsx=rxHomDsx
41 40 ixpeq2dva φfAFuncCgAFuncCr=1stfs=1stgxBaseArxHomCsx=xBaseArxHomDsx
42 1 homfeqbas φBaseA=BaseB
43 42 ad3antrrr φfAFuncCgAFuncCr=1stfs=1stgBaseA=BaseB
44 43 ixpeq1d φfAFuncCgAFuncCr=1stfs=1stgxBaseArxHomDsx=xBaseBrxHomDsx
45 41 44 eqtrd φfAFuncCgAFuncCr=1stfs=1stgxBaseArxHomCsx=xBaseBrxHomDsx
46 fveq2 x=zrx=rz
47 fveq2 x=zsx=sz
48 46 47 oveq12d x=zrxHomCsx=rzHomCsz
49 48 cbvixpv xBaseArxHomCsx=zBaseArzHomCsz
50 49 eleq2i axBaseArxHomCsxazBaseArzHomCsz
51 43 adantr φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszBaseA=BaseB
52 51 adantr φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseABaseA=BaseB
53 eqid HomA=HomA
54 eqid HomB=HomB
55 1 ad6antr φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAHom𝑓A=Hom𝑓B
56 simplr φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAxBaseA
57 simpr φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAyBaseA
58 23 53 54 55 56 57 homfeqval φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAxHomAy=xHomBy
59 eqid compC=compC
60 eqid compD=compD
61 3 ad7antr φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAyHom𝑓C=Hom𝑓D
62 4 ad7antr φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAycomp𝑓C=comp𝑓D
63 32 ad5ant13 φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAyrxBaseC
64 31 ad2antrr φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAr:BaseABaseC
65 64 ffvelcdmda φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAryBaseC
66 65 adantr φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAyryBaseC
67 38 ad2antrr φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAs:BaseABaseC
68 67 ffvelcdmda φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAsyBaseC
69 68 adantr φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAysyBaseC
70 30 ad3antrrr φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseArAFuncC2ndf
71 23 53 20 70 56 57 funcf2 φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAx2ndfy:xHomAyrxHomCry
72 71 ffvelcdmda φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAyx2ndfyhrxHomCry
73 fveq2 z=yrz=ry
74 fveq2 z=ysz=sy
75 73 74 oveq12d z=yrzHomCsz=ryHomCsy
76 75 fvixp azBaseArzHomCszyBaseAayryHomCsy
77 76 ad5ant24 φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAyayryHomCsy
78 19 20 59 60 61 62 63 66 69 72 77 comfeqval φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAyayrxrycompCsyx2ndfyh=ayrxrycompDsyx2ndfyh
79 39 ad5ant13 φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAysxBaseC
80 fveq2 z=xrz=rx
81 fveq2 z=xsz=sx
82 80 81 oveq12d z=xrzHomCsz=rxHomCsx
83 82 fvixp azBaseArzHomCszxBaseAaxrxHomCsx
84 83 ad5ant23 φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAyaxrxHomCsx
85 37 ad3antrrr φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAsAFuncC2ndg
86 23 53 20 85 56 57 funcf2 φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAx2ndgy:xHomAysxHomCsy
87 86 ffvelcdmda φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAyx2ndgyhsxHomCsy
88 19 20 59 60 61 62 63 79 69 84 87 comfeqval φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAyx2ndgyhrxsxcompCsyax=x2ndgyhrxsxcompDsyax
89 78 88 eqeq12d φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAyayrxrycompCsyx2ndfyh=x2ndgyhrxsxcompCsyaxayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
90 58 89 raleqbidva φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAyayrxrycompCsyx2ndfyh=x2ndgyhrxsxcompCsyaxhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
91 52 90 raleqbidva φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAyayrxrycompCsyx2ndfyh=x2ndgyhrxsxcompCsyaxyBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
92 51 91 raleqbidva φfAFuncCgAFuncCr=1stfs=1stgazBaseArzHomCszxBaseAyBaseAhxHomAyayrxrycompCsyx2ndfyh=x2ndgyhrxsxcompCsyaxxBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
93 50 92 sylan2b φfAFuncCgAFuncCr=1stfs=1stgaxBaseArxHomCsxxBaseAyBaseAhxHomAyayrxrycompCsyx2ndfyh=x2ndgyhrxsxcompCsyaxxBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
94 45 93 rabeqbidva φfAFuncCgAFuncCr=1stfs=1stgaxBaseArxHomCsx|xBaseAyBaseAhxHomAyayrxrycompCsyx2ndfyh=x2ndgyhrxsxcompCsyax=axBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
95 csbeq1a s=1stgaxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax=1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
96 95 adantl φfAFuncCgAFuncCr=1stfs=1stgaxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax=1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
97 94 96 eqtrd φfAFuncCgAFuncCr=1stfs=1stgaxBaseArxHomCsx|xBaseAyBaseAhxHomAyayrxrycompCsyx2ndfyh=x2ndgyhrxsxcompCsyax=1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
98 15 17 18 97 csbiedf φfAFuncCgAFuncCr=1stf1stg/saxBaseArxHomCsx|xBaseAyBaseAhxHomAyayrxrycompCsyx2ndfyh=x2ndgyhrxsxcompCsyax=1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
99 csbeq1a r=1stf1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax=1stf/r1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
100 99 adantl φfAFuncCgAFuncCr=1stf1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax=1stf/r1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
101 98 100 eqtrd φfAFuncCgAFuncCr=1stf1stg/saxBaseArxHomCsx|xBaseAyBaseAhxHomAyayrxrycompCsyx2ndfyh=x2ndgyhrxsxcompCsyax=1stf/r1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
102 11 13 14 101 csbiedf φfAFuncCgAFuncC1stf/r1stg/saxBaseArxHomCsx|xBaseAyBaseAhxHomAyayrxrycompCsyx2ndfyh=x2ndgyhrxsxcompCsyax=1stf/r1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
103 9 10 102 mpoeq123dva φfAFuncC,gAFuncC1stf/r1stg/saxBaseArxHomCsx|xBaseAyBaseAhxHomAyayrxrycompCsyx2ndfyh=x2ndgyhrxsxcompCsyax=fBFuncD,gBFuncD1stf/r1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
104 eqid ANatC=ANatC
105 104 23 53 20 59 natfval ANatC=fAFuncC,gAFuncC1stf/r1stg/saxBaseArxHomCsx|xBaseAyBaseAhxHomAyayrxrycompCsyx2ndfyh=x2ndgyhrxsxcompCsyax
106 eqid BNatD=BNatD
107 eqid BaseB=BaseB
108 106 107 54 21 60 natfval BNatD=fBFuncD,gBFuncD1stf/r1stg/saxBaseBrxHomDsx|xBaseByBaseBhxHomByayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
109 103 105 108 3eqtr4g φANatC=BNatD