Metamath Proof Explorer


Theorem nlmvscnlem2

Description: Lemma for nlmvscn . Compare this proof with the similar elementary proof mulcn2 for continuity of multiplication on CC . (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses nlmvscn.f F=ScalarW
nlmvscn.v V=BaseW
nlmvscn.k K=BaseF
nlmvscn.d D=distW
nlmvscn.e E=distF
nlmvscn.n N=normW
nlmvscn.a A=normF
nlmvscn.s ·˙=W
nlmvscn.t T=R2AB+1
nlmvscn.u U=R2NX+T
nlmvscn.w φWNrmMod
nlmvscn.r φR+
nlmvscn.b φBK
nlmvscn.x φXV
nlmvscn.c φCK
nlmvscn.y φYV
nlmvscn.1 φBEC<U
nlmvscn.2 φXDY<T
Assertion nlmvscnlem2 φB·˙XDC·˙Y<R

Proof

Step Hyp Ref Expression
1 nlmvscn.f F=ScalarW
2 nlmvscn.v V=BaseW
3 nlmvscn.k K=BaseF
4 nlmvscn.d D=distW
5 nlmvscn.e E=distF
6 nlmvscn.n N=normW
7 nlmvscn.a A=normF
8 nlmvscn.s ·˙=W
9 nlmvscn.t T=R2AB+1
10 nlmvscn.u U=R2NX+T
11 nlmvscn.w φWNrmMod
12 nlmvscn.r φR+
13 nlmvscn.b φBK
14 nlmvscn.x φXV
15 nlmvscn.c φCK
16 nlmvscn.y φYV
17 nlmvscn.1 φBEC<U
18 nlmvscn.2 φXDY<T
19 nlmngp WNrmModWNrmGrp
20 11 19 syl φWNrmGrp
21 ngpms WNrmGrpWMetSp
22 20 21 syl φWMetSp
23 nlmlmod WNrmModWLMod
24 11 23 syl φWLMod
25 2 1 8 3 lmodvscl WLModBKXVB·˙XV
26 24 13 14 25 syl3anc φB·˙XV
27 2 1 8 3 lmodvscl WLModCKYVC·˙YV
28 24 15 16 27 syl3anc φC·˙YV
29 2 4 mscl WMetSpB·˙XVC·˙YVB·˙XDC·˙Y
30 22 26 28 29 syl3anc φB·˙XDC·˙Y
31 2 1 8 3 lmodvscl WLModBKYVB·˙YV
32 24 13 16 31 syl3anc φB·˙YV
33 2 4 mscl WMetSpB·˙XVB·˙YVB·˙XDB·˙Y
34 22 26 32 33 syl3anc φB·˙XDB·˙Y
35 2 4 mscl WMetSpB·˙YVC·˙YVB·˙YDC·˙Y
36 22 32 28 35 syl3anc φB·˙YDC·˙Y
37 34 36 readdcld φB·˙XDB·˙Y+B·˙YDC·˙Y
38 12 rpred φR
39 2 4 mstri WMetSpB·˙XVC·˙YVB·˙YVB·˙XDC·˙YB·˙XDB·˙Y+B·˙YDC·˙Y
40 22 26 28 32 39 syl13anc φB·˙XDC·˙YB·˙XDB·˙Y+B·˙YDC·˙Y
41 1 nlmngp2 WNrmModFNrmGrp
42 11 41 syl φFNrmGrp
43 3 7 nmcl FNrmGrpBKAB
44 42 13 43 syl2anc φAB
45 3 7 nmge0 FNrmGrpBK0AB
46 42 13 45 syl2anc φ0AB
47 44 46 ge0p1rpd φAB+1+
48 47 rpred φAB+1
49 2 4 mscl WMetSpXVYVXDY
50 22 14 16 49 syl3anc φXDY
51 48 50 remulcld φAB+1XDY
52 38 rehalfcld φR2
53 2 8 1 3 4 7 nlmdsdi WNrmModBKXVYVABXDY=B·˙XDB·˙Y
54 11 13 14 16 53 syl13anc φABXDY=B·˙XDB·˙Y
55 msxms WMetSpW∞MetSp
56 22 55 syl φW∞MetSp
57 2 4 xmsge0 W∞MetSpXVYV0XDY
58 56 14 16 57 syl3anc φ0XDY
59 44 lep1d φABAB+1
60 44 48 50 58 59 lemul1ad φABXDYAB+1XDY
61 54 60 eqbrtrrd φB·˙XDB·˙YAB+1XDY
62 18 9 breqtrdi φXDY<R2AB+1
63 50 52 47 ltmuldiv2d φAB+1XDY<R2XDY<R2AB+1
64 62 63 mpbird φAB+1XDY<R2
65 34 51 52 61 64 lelttrd φB·˙XDB·˙Y<R2
66 ngpms FNrmGrpFMetSp
67 42 66 syl φFMetSp
68 3 5 mscl FMetSpBKCKBEC
69 67 13 15 68 syl3anc φBEC
70 2 6 nmcl WNrmGrpXVNX
71 20 14 70 syl2anc φNX
72 12 rphalfcld φR2+
73 72 47 rpdivcld φR2AB+1+
74 9 73 eqeltrid φT+
75 74 rpred φT
76 71 75 readdcld φNX+T
77 69 76 remulcld φBECNX+T
78 2 8 1 3 4 6 5 nlmdsdir WNrmModBKCKYVBECNY=B·˙YDC·˙Y
79 11 13 15 16 78 syl13anc φBECNY=B·˙YDC·˙Y
80 2 6 nmcl WNrmGrpYVNY
81 20 16 80 syl2anc φNY
82 msxms FMetSpF∞MetSp
83 67 82 syl φF∞MetSp
84 3 5 xmsge0 F∞MetSpBKCK0BEC
85 83 13 15 84 syl3anc φ0BEC
86 81 71 resubcld φNYNX
87 eqid -W=-W
88 2 6 87 nm2dif WNrmGrpYVXVNYNXNY-WX
89 20 16 14 88 syl3anc φNYNXNY-WX
90 6 2 87 4 ngpdsr WNrmGrpXVYVXDY=NY-WX
91 20 14 16 90 syl3anc φXDY=NY-WX
92 89 91 breqtrrd φNYNXXDY
93 50 75 18 ltled φXDYT
94 86 50 75 92 93 letrd φNYNXT
95 81 71 75 lesubadd2d φNYNXTNYNX+T
96 94 95 mpbid φNYNX+T
97 81 76 69 85 96 lemul2ad φBECNYBECNX+T
98 79 97 eqbrtrrd φB·˙YDC·˙YBECNX+T
99 17 10 breqtrdi φBEC<R2NX+T
100 0red φ0
101 2 6 nmge0 WNrmGrpXV0NX
102 20 14 101 syl2anc φ0NX
103 71 74 ltaddrpd φNX<NX+T
104 100 71 76 102 103 lelttrd φ0<NX+T
105 ltmuldiv BECR2NX+T0<NX+TBECNX+T<R2BEC<R2NX+T
106 69 52 76 104 105 syl112anc φBECNX+T<R2BEC<R2NX+T
107 99 106 mpbird φBECNX+T<R2
108 36 77 52 98 107 lelttrd φB·˙YDC·˙Y<R2
109 34 36 38 65 108 lt2halvesd φB·˙XDB·˙Y+B·˙YDC·˙Y<R
110 30 37 38 40 109 lelttrd φB·˙XDC·˙Y<R