Metamath Proof Explorer


Theorem noinfbnd1

Description: Bounding law from above for the surreal infimum. Analagous to proposition 4.2 of Lipparini p. 6. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypothesis noinfbnd1.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
Assertion noinfbnd1 BNoBVUBT<sUdomT

Proof

Step Hyp Ref Expression
1 noinfbnd1.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
2 simpr1 xByB¬y<sxBNoBVUBBNo
3 simpl xByB¬y<sxBNoBVUBxByB¬y<sx
4 nominmo BNo*xByB¬y<sx
5 2 4 syl xByB¬y<sxBNoBVUB*xByB¬y<sx
6 reu5 ∃!xByB¬y<sxxByB¬y<sx*xByB¬y<sx
7 3 5 6 sylanbrc xByB¬y<sxBNoBVUB∃!xByB¬y<sx
8 riotacl ∃!xByB¬y<sxιxB|yB¬y<sxB
9 7 8 syl xByB¬y<sxBNoBVUBιxB|yB¬y<sxB
10 2 9 sseldd xByB¬y<sxBNoBVUBιxB|yB¬y<sxNo
11 noextendlt ιxB|yB¬y<sxNoιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜<sιxB|yB¬y<sx
12 10 11 syl xByB¬y<sxBNoBVUBιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜<sιxB|yB¬y<sx
13 simpr3 xByB¬y<sxBNoBVUBUB
14 nfv xBNoBVUB
15 nfcv _xB
16 nfcv _xy
17 nfcv _x<s
18 nfriota1 _xιxB|yB¬y<sx
19 16 17 18 nfbr xy<sιxB|yB¬y<sx
20 19 nfn x¬y<sιxB|yB¬y<sx
21 15 20 nfralw xyB¬y<sιxB|yB¬y<sx
22 14 21 nfim xBNoBVUByB¬y<sιxB|yB¬y<sx
23 simpl xByB¬y<sxBNoBVUBxByB¬y<sx
24 rspe xByB¬y<sxxByB¬y<sx
25 24 adantr xByB¬y<sxBNoBVUBxByB¬y<sx
26 simpr1 xByB¬y<sxBNoBVUBBNo
27 26 4 syl xByB¬y<sxBNoBVUB*xByB¬y<sx
28 25 27 6 sylanbrc xByB¬y<sxBNoBVUB∃!xByB¬y<sx
29 riota1 ∃!xByB¬y<sxxByB¬y<sxιxB|yB¬y<sx=x
30 28 29 syl xByB¬y<sxBNoBVUBxByB¬y<sxιxB|yB¬y<sx=x
31 23 30 mpbid xByB¬y<sxBNoBVUBιxB|yB¬y<sx=x
32 simplr xByB¬y<sxBNoBVUByB¬y<sx
33 nfra1 yyB¬y<sx
34 nfcv _yB
35 33 34 nfriota _yιxB|yB¬y<sx
36 35 nfeq1 yιxB|yB¬y<sx=x
37 breq2 ιxB|yB¬y<sx=xy<sιxB|yB¬y<sxy<sx
38 37 notbid ιxB|yB¬y<sx=x¬y<sιxB|yB¬y<sx¬y<sx
39 36 38 ralbid ιxB|yB¬y<sx=xyB¬y<sιxB|yB¬y<sxyB¬y<sx
40 39 biimprd ιxB|yB¬y<sx=xyB¬y<sxyB¬y<sιxB|yB¬y<sx
41 31 32 40 sylc xByB¬y<sxBNoBVUByB¬y<sιxB|yB¬y<sx
42 41 exp31 xByB¬y<sxBNoBVUByB¬y<sιxB|yB¬y<sx
43 22 42 rexlimi xByB¬y<sxBNoBVUByB¬y<sιxB|yB¬y<sx
44 43 imp xByB¬y<sxBNoBVUByB¬y<sιxB|yB¬y<sx
45 nfcv _yU
46 nfcv _y<s
47 45 46 35 nfbr yU<sιxB|yB¬y<sx
48 47 nfn y¬U<sιxB|yB¬y<sx
49 breq1 y=Uy<sιxB|yB¬y<sxU<sιxB|yB¬y<sx
50 49 notbid y=U¬y<sιxB|yB¬y<sx¬U<sιxB|yB¬y<sx
51 48 50 rspc UByB¬y<sιxB|yB¬y<sx¬U<sιxB|yB¬y<sx
52 13 44 51 sylc xByB¬y<sxBNoBVUB¬U<sιxB|yB¬y<sx
53 nofun ιxB|yB¬y<sxNoFunιxB|yB¬y<sx
54 funrel FunιxB|yB¬y<sxRelιxB|yB¬y<sx
55 10 53 54 3syl xByB¬y<sxBNoBVUBRelιxB|yB¬y<sx
56 sssucid domιxB|yB¬y<sxsucdomιxB|yB¬y<sx
57 relssres RelιxB|yB¬y<sxdomιxB|yB¬y<sxsucdomιxB|yB¬y<sxιxB|yB¬y<sxsucdomιxB|yB¬y<sx=ιxB|yB¬y<sx
58 55 56 57 sylancl xByB¬y<sxBNoBVUBιxB|yB¬y<sxsucdomιxB|yB¬y<sx=ιxB|yB¬y<sx
59 58 breq2d xByB¬y<sxBNoBVUBUsucdomιxB|yB¬y<sx<sιxB|yB¬y<sxsucdomιxB|yB¬y<sxUsucdomιxB|yB¬y<sx<sιxB|yB¬y<sx
60 2 13 sseldd xByB¬y<sxBNoBVUBUNo
61 nodmon ιxB|yB¬y<sxNodomιxB|yB¬y<sxOn
62 10 61 syl xByB¬y<sxBNoBVUBdomιxB|yB¬y<sxOn
63 onsucb domιxB|yB¬y<sxOnsucdomιxB|yB¬y<sxOn
64 62 63 sylib xByB¬y<sxBNoBVUBsucdomιxB|yB¬y<sxOn
65 sltres UNoιxB|yB¬y<sxNosucdomιxB|yB¬y<sxOnUsucdomιxB|yB¬y<sx<sιxB|yB¬y<sxsucdomιxB|yB¬y<sxU<sιxB|yB¬y<sx
66 60 10 64 65 syl3anc xByB¬y<sxBNoBVUBUsucdomιxB|yB¬y<sx<sιxB|yB¬y<sxsucdomιxB|yB¬y<sxU<sιxB|yB¬y<sx
67 59 66 sylbird xByB¬y<sxBNoBVUBUsucdomιxB|yB¬y<sx<sιxB|yB¬y<sxU<sιxB|yB¬y<sx
68 52 67 mtod xByB¬y<sxBNoBVUB¬UsucdomιxB|yB¬y<sx<sιxB|yB¬y<sx
69 1oex 1𝑜V
70 69 prid1 1𝑜1𝑜2𝑜
71 70 noextend ιxB|yB¬y<sxNoιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜No
72 10 71 syl xByB¬y<sxBNoBVUBιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜No
73 noreson UNosucdomιxB|yB¬y<sxOnUsucdomιxB|yB¬y<sxNo
74 60 64 73 syl2anc xByB¬y<sxBNoBVUBUsucdomιxB|yB¬y<sxNo
75 sltso <sOrNo
76 sotr3 <sOrNoιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜NoιxB|yB¬y<sxNoUsucdomιxB|yB¬y<sxNoιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜<sιxB|yB¬y<sx¬UsucdomιxB|yB¬y<sx<sιxB|yB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜<sUsucdomιxB|yB¬y<sx
77 75 76 mpan ιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜NoιxB|yB¬y<sxNoUsucdomιxB|yB¬y<sxNoιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜<sιxB|yB¬y<sx¬UsucdomιxB|yB¬y<sx<sιxB|yB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜<sUsucdomιxB|yB¬y<sx
78 72 10 74 77 syl3anc xByB¬y<sxBNoBVUBιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜<sιxB|yB¬y<sx¬UsucdomιxB|yB¬y<sx<sιxB|yB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜<sUsucdomιxB|yB¬y<sx
79 12 68 78 mp2and xByB¬y<sxBNoBVUBιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜<sUsucdomιxB|yB¬y<sx
80 iftrue xByB¬y<sxifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x=ιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜
81 1 80 eqtrid xByB¬y<sxT=ιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜
82 81 adantr xByB¬y<sxBNoBVUBT=ιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜
83 81 dmeqd xByB¬y<sxdomT=domιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜
84 69 dmsnop domdomιxB|yB¬y<sx1𝑜=domιxB|yB¬y<sx
85 84 uneq2i domιxB|yB¬y<sxdomdomιxB|yB¬y<sx1𝑜=domιxB|yB¬y<sxdomιxB|yB¬y<sx
86 dmun domιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜=domιxB|yB¬y<sxdomdomιxB|yB¬y<sx1𝑜
87 df-suc sucdomιxB|yB¬y<sx=domιxB|yB¬y<sxdomιxB|yB¬y<sx
88 85 86 87 3eqtr4i domιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜=sucdomιxB|yB¬y<sx
89 83 88 eqtrdi xByB¬y<sxdomT=sucdomιxB|yB¬y<sx
90 89 reseq2d xByB¬y<sxUdomT=UsucdomιxB|yB¬y<sx
91 90 adantr xByB¬y<sxBNoBVUBUdomT=UsucdomιxB|yB¬y<sx
92 79 82 91 3brtr4d xByB¬y<sxBNoBVUBT<sUdomT
93 simpl ¬xByB¬y<sxBNoBVUB¬xByB¬y<sx
94 simpr1 ¬xByB¬y<sxBNoBVUBBNo
95 simpr2 ¬xByB¬y<sxBNoBVUBBV
96 simpr3 ¬xByB¬y<sxBNoBVUBUB
97 1 noinfbnd1lem6 ¬xByB¬y<sxBNoBVUBT<sUdomT
98 93 94 95 96 97 syl121anc ¬xByB¬y<sxBNoBVUBT<sUdomT
99 92 98 pm2.61ian BNoBVUBT<sUdomT