| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrcls.o |
|
| 2 |
|
ntrcls.d |
|
| 3 |
|
ntrcls.r |
|
| 4 |
|
ineq1 |
|
| 5 |
4
|
eqeq1d |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
ineq1d |
|
| 8 |
7
|
eqeq1d |
|
| 9 |
5 8
|
imbi12d |
|
| 10 |
|
ineq2 |
|
| 11 |
10
|
eqeq1d |
|
| 12 |
|
fveq2 |
|
| 13 |
12
|
ineq2d |
|
| 14 |
13
|
eqeq1d |
|
| 15 |
11 14
|
imbi12d |
|
| 16 |
9 15
|
cbvral2vw |
|
| 17 |
2 3
|
ntrclsrcomplex |
|
| 18 |
17
|
adantr |
|
| 19 |
2 3
|
ntrclsrcomplex |
|
| 20 |
19
|
adantr |
|
| 21 |
|
difeq2 |
|
| 22 |
21
|
eqeq2d |
|
| 23 |
22
|
adantl |
|
| 24 |
|
elpwi |
|
| 25 |
|
dfss4 |
|
| 26 |
24 25
|
sylib |
|
| 27 |
26
|
eqcomd |
|
| 28 |
27
|
adantl |
|
| 29 |
20 23 28
|
rspcedvd |
|
| 30 |
|
simpl1 |
|
| 31 |
2 3
|
ntrclsrcomplex |
|
| 32 |
30 31
|
syl |
|
| 33 |
2 3
|
ntrclsrcomplex |
|
| 34 |
33
|
adantr |
|
| 35 |
|
difeq2 |
|
| 36 |
35
|
eqeq2d |
|
| 37 |
36
|
adantl |
|
| 38 |
|
elpwi |
|
| 39 |
|
dfss4 |
|
| 40 |
38 39
|
sylib |
|
| 41 |
40
|
eqcomd |
|
| 42 |
41
|
adantl |
|
| 43 |
34 37 42
|
rspcedvd |
|
| 44 |
43
|
3ad2antl1 |
|
| 45 |
|
simp13 |
|
| 46 |
|
ineq1 |
|
| 47 |
46
|
eqeq1d |
|
| 48 |
|
fveq2 |
|
| 49 |
48
|
ineq1d |
|
| 50 |
49
|
eqeq1d |
|
| 51 |
47 50
|
imbi12d |
|
| 52 |
45 51
|
syl |
|
| 53 |
|
simp3 |
|
| 54 |
|
ineq2 |
|
| 55 |
54
|
eqeq1d |
|
| 56 |
|
fveq2 |
|
| 57 |
56
|
ineq2d |
|
| 58 |
57
|
eqeq1d |
|
| 59 |
55 58
|
imbi12d |
|
| 60 |
53 59
|
syl |
|
| 61 |
|
simp11 |
|
| 62 |
|
simp12 |
|
| 63 |
|
simp2 |
|
| 64 |
|
simp2 |
|
| 65 |
64
|
elpwid |
|
| 66 |
|
simp3 |
|
| 67 |
66
|
elpwid |
|
| 68 |
65 67
|
unssd |
|
| 69 |
|
ssid |
|
| 70 |
|
rcompleq |
|
| 71 |
68 69 70
|
sylancl |
|
| 72 |
|
difundi |
|
| 73 |
|
difid |
|
| 74 |
72 73
|
eqeq12i |
|
| 75 |
71 74
|
bitr2di |
|
| 76 |
1 2 3
|
ntrclsiex |
|
| 77 |
76
|
3ad2ant1 |
|
| 78 |
|
elmapi |
|
| 79 |
77 78
|
syl |
|
| 80 |
2 3
|
ntrclsbex |
|
| 81 |
80
|
3ad2ant1 |
|
| 82 |
|
difssd |
|
| 83 |
81 82
|
sselpwd |
|
| 84 |
79 83
|
ffvelcdmd |
|
| 85 |
84
|
elpwid |
|
| 86 |
|
ssinss1 |
|
| 87 |
85 86
|
syl |
|
| 88 |
|
0ss |
|
| 89 |
|
rcompleq |
|
| 90 |
87 88 89
|
sylancl |
|
| 91 |
|
difindi |
|
| 92 |
|
dif0 |
|
| 93 |
91 92
|
eqeq12i |
|
| 94 |
90 93
|
bitrdi |
|
| 95 |
75 94
|
imbi12d |
|
| 96 |
|
eqid |
|
| 97 |
|
eqid |
|
| 98 |
1 2 81 77 96 64 97
|
dssmapfv3d |
|
| 99 |
|
eqid |
|
| 100 |
1 2 81 77 96 66 99
|
dssmapfv3d |
|
| 101 |
98 100
|
uneq12d |
|
| 102 |
1 2 3
|
ntrclsfv1 |
|
| 103 |
102
|
3ad2ant1 |
|
| 104 |
|
fveq1 |
|
| 105 |
|
fveq1 |
|
| 106 |
104 105
|
uneq12d |
|
| 107 |
103 106
|
syl |
|
| 108 |
101 107
|
eqtr3d |
|
| 109 |
108
|
eqeq1d |
|
| 110 |
109
|
imbi2d |
|
| 111 |
95 110
|
bitrd |
|
| 112 |
61 62 63 111
|
syl3anc |
|
| 113 |
52 60 112
|
3bitrd |
|
| 114 |
32 44 113
|
ralxfrd2 |
|
| 115 |
18 29 114
|
ralxfrd2 |
|
| 116 |
16 115
|
bitrid |
|