Metamath Proof Explorer


Theorem ntrclskb

Description: The interiors of disjoint sets are disjoint if and only if the closures of sets that span the base set also span the base set. (Contributed by RP, 10-Jun-2021)

Ref Expression
Hypotheses ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
ntrcls.d D=OB
ntrcls.r φIDK
Assertion ntrclskb φs𝒫Bt𝒫Bst=IsIt=s𝒫Bt𝒫Bst=BKsKt=B

Proof

Step Hyp Ref Expression
1 ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
2 ntrcls.d D=OB
3 ntrcls.r φIDK
4 ineq1 s=ast=at
5 4 eqeq1d s=ast=at=
6 fveq2 s=aIs=Ia
7 6 ineq1d s=aIsIt=IaIt
8 7 eqeq1d s=aIsIt=IaIt=
9 5 8 imbi12d s=ast=IsIt=at=IaIt=
10 ineq2 t=bat=ab
11 10 eqeq1d t=bat=ab=
12 fveq2 t=bIt=Ib
13 12 ineq2d t=bIaIt=IaIb
14 13 eqeq1d t=bIaIt=IaIb=
15 11 14 imbi12d t=bat=IaIt=ab=IaIb=
16 9 15 cbvral2vw s𝒫Bt𝒫Bst=IsIt=a𝒫Bb𝒫Bab=IaIb=
17 2 3 ntrclsrcomplex φBs𝒫B
18 17 adantr φs𝒫BBs𝒫B
19 2 3 ntrclsrcomplex φBa𝒫B
20 19 adantr φa𝒫BBa𝒫B
21 difeq2 s=BaBs=BBa
22 21 eqeq2d s=Baa=Bsa=BBa
23 22 adantl φa𝒫Bs=Baa=Bsa=BBa
24 elpwi a𝒫BaB
25 dfss4 aBBBa=a
26 24 25 sylib a𝒫BBBa=a
27 26 eqcomd a𝒫Ba=BBa
28 27 adantl φa𝒫Ba=BBa
29 20 23 28 rspcedvd φa𝒫Bs𝒫Ba=Bs
30 simpl1 φs𝒫Ba=Bst𝒫Bφ
31 2 3 ntrclsrcomplex φBt𝒫B
32 30 31 syl φs𝒫Ba=Bst𝒫BBt𝒫B
33 2 3 ntrclsrcomplex φBb𝒫B
34 33 adantr φb𝒫BBb𝒫B
35 difeq2 t=BbBt=BBb
36 35 eqeq2d t=Bbb=Btb=BBb
37 36 adantl φb𝒫Bt=Bbb=Btb=BBb
38 elpwi b𝒫BbB
39 dfss4 bBBBb=b
40 38 39 sylib b𝒫BBBb=b
41 40 eqcomd b𝒫Bb=BBb
42 41 adantl φb𝒫Bb=BBb
43 34 37 42 rspcedvd φb𝒫Bt𝒫Bb=Bt
44 43 3ad2antl1 φs𝒫Ba=Bsb𝒫Bt𝒫Bb=Bt
45 simp13 φs𝒫Ba=Bst𝒫Bb=Bta=Bs
46 ineq1 a=Bsab=Bsb
47 46 eqeq1d a=Bsab=Bsb=
48 fveq2 a=BsIa=IBs
49 48 ineq1d a=BsIaIb=IBsIb
50 49 eqeq1d a=BsIaIb=IBsIb=
51 47 50 imbi12d a=Bsab=IaIb=Bsb=IBsIb=
52 45 51 syl φs𝒫Ba=Bst𝒫Bb=Btab=IaIb=Bsb=IBsIb=
53 simp3 φs𝒫Ba=Bst𝒫Bb=Btb=Bt
54 ineq2 b=BtBsb=BsBt
55 54 eqeq1d b=BtBsb=BsBt=
56 fveq2 b=BtIb=IBt
57 56 ineq2d b=BtIBsIb=IBsIBt
58 57 eqeq1d b=BtIBsIb=IBsIBt=
59 55 58 imbi12d b=BtBsb=IBsIb=BsBt=IBsIBt=
60 53 59 syl φs𝒫Ba=Bst𝒫Bb=BtBsb=IBsIb=BsBt=IBsIBt=
61 simp11 φs𝒫Ba=Bst𝒫Bb=Btφ
62 simp12 φs𝒫Ba=Bst𝒫Bb=Bts𝒫B
63 simp2 φs𝒫Ba=Bst𝒫Bb=Btt𝒫B
64 simp2 φs𝒫Bt𝒫Bs𝒫B
65 64 elpwid φs𝒫Bt𝒫BsB
66 simp3 φs𝒫Bt𝒫Bt𝒫B
67 66 elpwid φs𝒫Bt𝒫BtB
68 65 67 unssd φs𝒫Bt𝒫BstB
69 ssid BB
70 rcompleq stBBBst=BBst=BB
71 68 69 70 sylancl φs𝒫Bt𝒫Bst=BBst=BB
72 difundi Bst=BsBt
73 difid BB=
74 72 73 eqeq12i Bst=BBBsBt=
75 71 74 bitr2di φs𝒫Bt𝒫BBsBt=st=B
76 1 2 3 ntrclsiex φI𝒫B𝒫B
77 76 3ad2ant1 φs𝒫Bt𝒫BI𝒫B𝒫B
78 elmapi I𝒫B𝒫BI:𝒫B𝒫B
79 77 78 syl φs𝒫Bt𝒫BI:𝒫B𝒫B
80 2 3 ntrclsbex φBV
81 80 3ad2ant1 φs𝒫Bt𝒫BBV
82 difssd φs𝒫Bt𝒫BBsB
83 81 82 sselpwd φs𝒫Bt𝒫BBs𝒫B
84 79 83 ffvelcdmd φs𝒫Bt𝒫BIBs𝒫B
85 84 elpwid φs𝒫Bt𝒫BIBsB
86 ssinss1 IBsBIBsIBtB
87 85 86 syl φs𝒫Bt𝒫BIBsIBtB
88 0ss B
89 rcompleq IBsIBtBBIBsIBt=BIBsIBt=B
90 87 88 89 sylancl φs𝒫Bt𝒫BIBsIBt=BIBsIBt=B
91 difindi BIBsIBt=BIBsBIBt
92 dif0 B=B
93 91 92 eqeq12i BIBsIBt=BBIBsBIBt=B
94 90 93 bitrdi φs𝒫Bt𝒫BIBsIBt=BIBsBIBt=B
95 75 94 imbi12d φs𝒫Bt𝒫BBsBt=IBsIBt=st=BBIBsBIBt=B
96 eqid DI=DI
97 eqid DIs=DIs
98 1 2 81 77 96 64 97 dssmapfv3d φs𝒫Bt𝒫BDIs=BIBs
99 eqid DIt=DIt
100 1 2 81 77 96 66 99 dssmapfv3d φs𝒫Bt𝒫BDIt=BIBt
101 98 100 uneq12d φs𝒫Bt𝒫BDIsDIt=BIBsBIBt
102 1 2 3 ntrclsfv1 φDI=K
103 102 3ad2ant1 φs𝒫Bt𝒫BDI=K
104 fveq1 DI=KDIs=Ks
105 fveq1 DI=KDIt=Kt
106 104 105 uneq12d DI=KDIsDIt=KsKt
107 103 106 syl φs𝒫Bt𝒫BDIsDIt=KsKt
108 101 107 eqtr3d φs𝒫Bt𝒫BBIBsBIBt=KsKt
109 108 eqeq1d φs𝒫Bt𝒫BBIBsBIBt=BKsKt=B
110 109 imbi2d φs𝒫Bt𝒫Bst=BBIBsBIBt=Bst=BKsKt=B
111 95 110 bitrd φs𝒫Bt𝒫BBsBt=IBsIBt=st=BKsKt=B
112 61 62 63 111 syl3anc φs𝒫Ba=Bst𝒫Bb=BtBsBt=IBsIBt=st=BKsKt=B
113 52 60 112 3bitrd φs𝒫Ba=Bst𝒫Bb=Btab=IaIb=st=BKsKt=B
114 32 44 113 ralxfrd2 φs𝒫Ba=Bsb𝒫Bab=IaIb=t𝒫Bst=BKsKt=B
115 18 29 114 ralxfrd2 φa𝒫Bb𝒫Bab=IaIb=s𝒫Bt𝒫Bst=BKsKt=B
116 16 115 bitrid φs𝒫Bt𝒫Bst=IsIt=s𝒫Bt𝒫Bst=BKsKt=B