Metamath Proof Explorer


Theorem numclwwlk5

Description: Statement 13 in Huneke p. 2: "Let p be a prime divisor of k-1; then f(p) = 1 (mod p) [for each vertex v]". (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 2-Jun-2021) (Revised by AV, 7-Mar-2022)

Ref Expression
Hypothesis numclwwlk3.v V=VtxG
Assertion numclwwlk5 GRegUSGraphKGFriendGraphVFinXVPPK1XClWWalksNOnGPmodP=1

Proof

Step Hyp Ref Expression
1 numclwwlk3.v V=VtxG
2 simpl1 GRegUSGraphKGFriendGraphVFinXV22K1GRegUSGraphK
3 simpr1 GRegUSGraphKGFriendGraphVFinXV22K1XV
4 1 finrusgrfusgr GRegUSGraphKVFinGFinUSGraph
5 4 3adant2 GRegUSGraphKGFriendGraphVFinGFinUSGraph
6 5 adantl XVGRegUSGraphKGFriendGraphVFinGFinUSGraph
7 simpr1 XVGRegUSGraphKGFriendGraphVFinGRegUSGraphK
8 ne0i XVV
9 8 adantr XVGRegUSGraphKGFriendGraphVFinV
10 1 frusgrnn0 GFinUSGraphGRegUSGraphKVK0
11 6 7 9 10 syl3anc XVGRegUSGraphKGFriendGraphVFinK0
12 11 ex XVGRegUSGraphKGFriendGraphVFinK0
13 12 3ad2ant1 XV22K1GRegUSGraphKGFriendGraphVFinK0
14 13 impcom GRegUSGraphKGFriendGraphVFinXV22K1K0
15 2 3 14 3jca GRegUSGraphKGFriendGraphVFinXV22K1GRegUSGraphKXVK0
16 simpr3 GRegUSGraphKGFriendGraphVFinXV22K12K1
17 1 numclwwlk5lem GRegUSGraphKXVK02K1XClWWalksNOnG2mod2=1
18 15 16 17 sylc GRegUSGraphKGFriendGraphVFinXV22K1XClWWalksNOnG2mod2=1
19 18 a1i P=2GRegUSGraphKGFriendGraphVFinXV22K1XClWWalksNOnG2mod2=1
20 eleq1 P=2P2
21 breq1 P=2PK12K1
22 20 21 3anbi23d P=2XVPPK1XV22K1
23 22 anbi2d P=2GRegUSGraphKGFriendGraphVFinXVPPK1GRegUSGraphKGFriendGraphVFinXV22K1
24 oveq2 P=2XClWWalksNOnGP=XClWWalksNOnG2
25 24 fveq2d P=2XClWWalksNOnGP=XClWWalksNOnG2
26 id P=2P=2
27 25 26 oveq12d P=2XClWWalksNOnGPmodP=XClWWalksNOnG2mod2
28 27 eqeq1d P=2XClWWalksNOnGPmodP=1XClWWalksNOnG2mod2=1
29 19 23 28 3imtr4d P=2GRegUSGraphKGFriendGraphVFinXVPPK1XClWWalksNOnGPmodP=1
30 3simpa GRegUSGraphKGFriendGraphVFinGRegUSGraphKGFriendGraph
31 30 adantr GRegUSGraphKGFriendGraphVFinXVPPK1GRegUSGraphKGFriendGraph
32 31 adantl P2GRegUSGraphKGFriendGraphVFinXVPPK1GRegUSGraphKGFriendGraph
33 simprl3 P2GRegUSGraphKGFriendGraphVFinXVPPK1VFin
34 simprr1 P2GRegUSGraphKGFriendGraphVFinXVPPK1XV
35 eldifsn P2PP2
36 oddprmge3 P2P3
37 35 36 sylbir PP2P3
38 37 ex PP2P3
39 38 3ad2ant2 XVPPK1P2P3
40 39 adantl GRegUSGraphKGFriendGraphVFinXVPPK1P2P3
41 40 impcom P2GRegUSGraphKGFriendGraphVFinXVPPK1P3
42 1 numclwwlk3 GRegUSGraphKGFriendGraphVFinXVP3XClWWalksNOnGP=K1XClWWalksNOnGP2+KP2
43 32 33 34 41 42 syl13anc P2GRegUSGraphKGFriendGraphVFinXVPPK1XClWWalksNOnGP=K1XClWWalksNOnGP2+KP2
44 43 oveq1d P2GRegUSGraphKGFriendGraphVFinXVPPK1XClWWalksNOnGPmodP=K1XClWWalksNOnGP2+KP2modP
45 12 3ad2ant1 XVPPK1GRegUSGraphKGFriendGraphVFinK0
46 45 impcom GRegUSGraphKGFriendGraphVFinXVPPK1K0
47 46 nn0zd GRegUSGraphKGFriendGraphVFinXVPPK1K
48 peano2zm KK1
49 zre K1K1
50 47 48 49 3syl GRegUSGraphKGFriendGraphVFinXVPPK1K1
51 simpl3 GRegUSGraphKGFriendGraphVFinXVPPK1VFin
52 1 clwwlknonfin VFinXClWWalksNOnGP2Fin
53 hashcl XClWWalksNOnGP2FinXClWWalksNOnGP20
54 51 52 53 3syl GRegUSGraphKGFriendGraphVFinXVPPK1XClWWalksNOnGP20
55 54 nn0red GRegUSGraphKGFriendGraphVFinXVPPK1XClWWalksNOnGP2
56 50 55 remulcld GRegUSGraphKGFriendGraphVFinXVPPK1K1XClWWalksNOnGP2
57 46 nn0red GRegUSGraphKGFriendGraphVFinXVPPK1K
58 prmm2nn0 PP20
59 58 3ad2ant2 XVPPK1P20
60 59 adantl GRegUSGraphKGFriendGraphVFinXVPPK1P20
61 57 60 reexpcld GRegUSGraphKGFriendGraphVFinXVPPK1KP2
62 prmnn PP
63 62 nnrpd PP+
64 63 3ad2ant2 XVPPK1P+
65 64 adantl GRegUSGraphKGFriendGraphVFinXVPPK1P+
66 56 61 65 3jca GRegUSGraphKGFriendGraphVFinXVPPK1K1XClWWalksNOnGP2KP2P+
67 66 adantl P2GRegUSGraphKGFriendGraphVFinXVPPK1K1XClWWalksNOnGP2KP2P+
68 modaddabs K1XClWWalksNOnGP2KP2P+K1XClWWalksNOnGP2modP+KP2modPmodP=K1XClWWalksNOnGP2+KP2modP
69 68 eqcomd K1XClWWalksNOnGP2KP2P+K1XClWWalksNOnGP2+KP2modP=K1XClWWalksNOnGP2modP+KP2modPmodP
70 67 69 syl P2GRegUSGraphKGFriendGraphVFinXVPPK1K1XClWWalksNOnGP2+KP2modP=K1XClWWalksNOnGP2modP+KP2modPmodP
71 62 3ad2ant2 XVPPK1P
72 71 adantl GRegUSGraphKGFriendGraphVFinXVPPK1P
73 nn0z K0K
74 46 73 48 3syl GRegUSGraphKGFriendGraphVFinXVPPK1K1
75 54 nn0zd GRegUSGraphKGFriendGraphVFinXVPPK1XClWWalksNOnGP2
76 72 74 75 3jca GRegUSGraphKGFriendGraphVFinXVPPK1PK1XClWWalksNOnGP2
77 simpr3 GRegUSGraphKGFriendGraphVFinXVPPK1PK1
78 mulmoddvds PK1XClWWalksNOnGP2PK1K1XClWWalksNOnGP2modP=0
79 76 77 78 sylc GRegUSGraphKGFriendGraphVFinXVPPK1K1XClWWalksNOnGP2modP=0
80 simpr2 GRegUSGraphKGFriendGraphVFinXVPPK1P
81 80 47 jca GRegUSGraphKGFriendGraphVFinXVPPK1PK
82 powm2modprm PKPK1KP2modP=1
83 81 77 82 sylc GRegUSGraphKGFriendGraphVFinXVPPK1KP2modP=1
84 79 83 oveq12d GRegUSGraphKGFriendGraphVFinXVPPK1K1XClWWalksNOnGP2modP+KP2modP=0+1
85 84 oveq1d GRegUSGraphKGFriendGraphVFinXVPPK1K1XClWWalksNOnGP2modP+KP2modPmodP=0+1modP
86 0p1e1 0+1=1
87 86 oveq1i 0+1modP=1modP
88 62 nnred PP
89 prmgt1 P1<P
90 1mod P1<P1modP=1
91 88 89 90 syl2anc P1modP=1
92 87 91 eqtrid P0+1modP=1
93 92 3ad2ant2 XVPPK10+1modP=1
94 93 adantl GRegUSGraphKGFriendGraphVFinXVPPK10+1modP=1
95 85 94 eqtrd GRegUSGraphKGFriendGraphVFinXVPPK1K1XClWWalksNOnGP2modP+KP2modPmodP=1
96 95 adantl P2GRegUSGraphKGFriendGraphVFinXVPPK1K1XClWWalksNOnGP2modP+KP2modPmodP=1
97 44 70 96 3eqtrd P2GRegUSGraphKGFriendGraphVFinXVPPK1XClWWalksNOnGPmodP=1
98 97 ex P2GRegUSGraphKGFriendGraphVFinXVPPK1XClWWalksNOnGPmodP=1
99 29 98 pm2.61ine GRegUSGraphKGFriendGraphVFinXVPPK1XClWWalksNOnGPmodP=1