Metamath Proof Explorer


Theorem omcl2

Description: Closure law for ordinal multiplication. (Contributed by RP, 12-Jan-2025)

Ref Expression
Assertion omcl2 ACBCC=C=ω𝑜ω𝑜DDOnA𝑜BC

Proof

Step Hyp Ref Expression
1 eleq2 C=ACA
2 noel ¬A
3 2 pm2.21i AA𝑜BC
4 1 3 syl6bi C=ACA𝑜BC
5 4 com12 ACC=A𝑜BC
6 5 adantr ACBCC=A𝑜BC
7 simpl C=ω𝑜ω𝑜DDOnC=ω𝑜ω𝑜D
8 omelon ωOn
9 oecl ωOnDOnω𝑜DOn
10 8 9 mpan DOnω𝑜DOn
11 10 8 jctil DOnωOnω𝑜DOn
12 oecl ωOnω𝑜DOnω𝑜ω𝑜DOn
13 11 12 syl DOnω𝑜ω𝑜DOn
14 13 adantl C=ω𝑜ω𝑜DDOnω𝑜ω𝑜DOn
15 7 14 eqeltrd C=ω𝑜ω𝑜DDOnCOn
16 simpll ACBCC=ω𝑜ω𝑜DDOnAC
17 onelon COnACAOn
18 15 16 17 syl2an2 ACBCC=ω𝑜ω𝑜DDOnAOn
19 on0eqel AOnA=A
20 18 19 syl ACBCC=ω𝑜ω𝑜DDOnA=A
21 oveq1 A=A𝑜B=𝑜B
22 simpr ACBCBC
23 22 adantr ACBCC=ω𝑜ω𝑜DDOnBC
24 onelon COnBCBOn
25 15 23 24 syl2an2 ACBCC=ω𝑜ω𝑜DDOnBOn
26 om0r BOn𝑜B=
27 25 26 syl ACBCC=ω𝑜ω𝑜DDOn𝑜B=
28 21 27 sylan9eqr ACBCC=ω𝑜ω𝑜DDOnA=A𝑜B=
29 peano1 ω
30 oen0 ωOnω𝑜DOnωω𝑜ω𝑜D
31 11 29 30 sylancl DOnω𝑜ω𝑜D
32 31 adantl C=ω𝑜ω𝑜DDOnω𝑜ω𝑜D
33 32 7 eleqtrrd C=ω𝑜ω𝑜DDOnC
34 33 adantl ACBCC=ω𝑜ω𝑜DDOnC
35 34 adantr ACBCC=ω𝑜ω𝑜DDOnA=C
36 28 35 eqeltrd ACBCC=ω𝑜ω𝑜DDOnA=A𝑜BC
37 36 ex ACBCC=ω𝑜ω𝑜DDOnA=A𝑜BC
38 simp1 ACBCAAC
39 15 adantl ACBCAC=ω𝑜ω𝑜DDOnCOn
40 simpr ACBCAC=ω𝑜ω𝑜DDOnCOnCOn
41 38 ad2antrr ACBCAC=ω𝑜ω𝑜DDOnCOnAC
42 40 41 17 syl2anc ACBCAC=ω𝑜ω𝑜DDOnCOnAOn
43 42 ex ACBCAC=ω𝑜ω𝑜DDOnCOnAOn
44 39 43 jcai ACBCAC=ω𝑜ω𝑜DDOnCOnAOn
45 simpl3 ACBCAC=ω𝑜ω𝑜DDOnA
46 simpl2 ACBCAC=ω𝑜ω𝑜DDOnBC
47 omordi COnAOnABCA𝑜BA𝑜C
48 47 imp COnAOnABCA𝑜BA𝑜C
49 44 45 46 48 syl21anc ACBCAC=ω𝑜ω𝑜DDOnA𝑜BA𝑜C
50 oveq1 x=Ax𝑜C=A𝑜C
51 50 eliuni ACA𝑜BA𝑜CA𝑜BxCx𝑜C
52 38 49 51 syl2an2r ACBCAC=ω𝑜ω𝑜DDOnA𝑜BxCx𝑜C
53 simpr C=ω𝑜ω𝑜DDOnxCx=x=
54 53 oveq1d C=ω𝑜ω𝑜DDOnxCx=x𝑜C=𝑜C
55 om0r COn𝑜C=
56 15 55 syl C=ω𝑜ω𝑜DDOn𝑜C=
57 56 ad2antrr C=ω𝑜ω𝑜DDOnxCx=𝑜C=
58 54 57 eqtrd C=ω𝑜ω𝑜DDOnxCx=x𝑜C=
59 0ss C
60 59 a1i C=ω𝑜ω𝑜DDOnxCx=C
61 58 60 eqsstrd C=ω𝑜ω𝑜DDOnxCx=x𝑜CC
62 id xCxxCx
63 62 adantll C=ω𝑜ω𝑜DDOnxCxxCx
64 simpll C=ω𝑜ω𝑜DDOnxCxC=ω𝑜ω𝑜DDOn
65 64 3mix3d C=ω𝑜ω𝑜DDOnxCxC=C=2𝑜C=ω𝑜ω𝑜DDOn
66 omabs2 xCxC=C=2𝑜C=ω𝑜ω𝑜DDOnx𝑜C=C
67 63 65 66 syl2anc C=ω𝑜ω𝑜DDOnxCxx𝑜C=C
68 ssidd C=ω𝑜ω𝑜DDOnxCxCC
69 67 68 eqsstrd C=ω𝑜ω𝑜DDOnxCxx𝑜CC
70 onelon COnxCxOn
71 15 70 sylan C=ω𝑜ω𝑜DDOnxCxOn
72 on0eqel xOnx=x
73 71 72 syl C=ω𝑜ω𝑜DDOnxCx=x
74 61 69 73 mpjaodan C=ω𝑜ω𝑜DDOnxCx𝑜CC
75 74 iunssd C=ω𝑜ω𝑜DDOnxCx𝑜CC
76 simpr C=ω𝑜ω𝑜DDOnDOn
77 76 8 jctil C=ω𝑜ω𝑜DDOnωOnDOn
78 oen0 ωOnDOnωω𝑜D
79 77 29 78 sylancl C=ω𝑜ω𝑜DDOnω𝑜D
80 77 9 syl C=ω𝑜ω𝑜DDOnω𝑜DOn
81 1onn 1𝑜ω
82 ondif2 ωOn2𝑜ωOn1𝑜ω
83 8 81 82 mpbir2an ωOn2𝑜
84 oeordi ω𝑜DOnωOn2𝑜ω𝑜Dω𝑜ω𝑜ω𝑜D
85 80 83 84 sylancl C=ω𝑜ω𝑜DDOnω𝑜Dω𝑜ω𝑜ω𝑜D
86 79 85 mpd C=ω𝑜ω𝑜DDOnω𝑜ω𝑜ω𝑜D
87 oe0 ωOnω𝑜=1𝑜
88 8 87 ax-mp ω𝑜=1𝑜
89 88 eqcomi 1𝑜=ω𝑜
90 89 a1i C=ω𝑜ω𝑜DDOn1𝑜=ω𝑜
91 86 90 7 3eltr4d C=ω𝑜ω𝑜DDOn1𝑜C
92 oveq1 x=1𝑜x𝑜C=1𝑜𝑜C
93 om1r COn1𝑜𝑜C=C
94 15 93 syl C=ω𝑜ω𝑜DDOn1𝑜𝑜C=C
95 92 94 sylan9eqr C=ω𝑜ω𝑜DDOnx=1𝑜x𝑜C=C
96 95 sseq2d C=ω𝑜ω𝑜DDOnx=1𝑜Cx𝑜CCC
97 ssidd C=ω𝑜ω𝑜DDOnCC
98 91 96 97 rspcedvd C=ω𝑜ω𝑜DDOnxCCx𝑜C
99 ssiun xCCx𝑜CCxCx𝑜C
100 98 99 syl C=ω𝑜ω𝑜DDOnCxCx𝑜C
101 75 100 eqssd C=ω𝑜ω𝑜DDOnxCx𝑜C=C
102 101 adantl ACBCAC=ω𝑜ω𝑜DDOnxCx𝑜C=C
103 52 102 eleqtrd ACBCAC=ω𝑜ω𝑜DDOnA𝑜BC
104 103 ex ACBCAC=ω𝑜ω𝑜DDOnA𝑜BC
105 104 3expia ACBCAC=ω𝑜ω𝑜DDOnA𝑜BC
106 105 com23 ACBCC=ω𝑜ω𝑜DDOnAA𝑜BC
107 106 imp ACBCC=ω𝑜ω𝑜DDOnAA𝑜BC
108 37 107 jaod ACBCC=ω𝑜ω𝑜DDOnA=AA𝑜BC
109 20 108 mpd ACBCC=ω𝑜ω𝑜DDOnA𝑜BC
110 109 ex ACBCC=ω𝑜ω𝑜DDOnA𝑜BC
111 6 110 jaod ACBCC=C=ω𝑜ω𝑜DDOnA𝑜BC
112 111 imp ACBCC=C=ω𝑜ω𝑜DDOnA𝑜BC