| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq2 |  | 
						
							| 2 |  | noel |  | 
						
							| 3 | 2 | pm2.21i |  | 
						
							| 4 | 1 3 | biimtrdi |  | 
						
							| 5 | 4 | com12 |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 |  | simpl |  | 
						
							| 8 |  | omelon |  | 
						
							| 9 |  | oecl |  | 
						
							| 10 | 8 9 | mpan |  | 
						
							| 11 | 10 8 | jctil |  | 
						
							| 12 |  | oecl |  | 
						
							| 13 | 11 12 | syl |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 | 7 14 | eqeltrd |  | 
						
							| 16 |  | simpll |  | 
						
							| 17 |  | onelon |  | 
						
							| 18 | 15 16 17 | syl2an2 |  | 
						
							| 19 |  | on0eqel |  | 
						
							| 20 | 18 19 | syl |  | 
						
							| 21 |  | oveq1 |  | 
						
							| 22 |  | simpr |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 |  | onelon |  | 
						
							| 25 | 15 23 24 | syl2an2 |  | 
						
							| 26 |  | om0r |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 | 21 27 | sylan9eqr |  | 
						
							| 29 |  | peano1 |  | 
						
							| 30 |  | oen0 |  | 
						
							| 31 | 11 29 30 | sylancl |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 | 32 7 | eleqtrrd |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 | 28 35 | eqeltrd |  | 
						
							| 37 | 36 | ex |  | 
						
							| 38 |  | simp1 |  | 
						
							| 39 | 15 | adantl |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 | 38 | ad2antrr |  | 
						
							| 42 | 40 41 17 | syl2anc |  | 
						
							| 43 | 42 | ex |  | 
						
							| 44 | 39 43 | jcai |  | 
						
							| 45 |  | simpl3 |  | 
						
							| 46 |  | simpl2 |  | 
						
							| 47 |  | omordi |  | 
						
							| 48 | 47 | imp |  | 
						
							| 49 | 44 45 46 48 | syl21anc |  | 
						
							| 50 |  | oveq1 |  | 
						
							| 51 | 50 | eliuni |  | 
						
							| 52 | 38 49 51 | syl2an2r |  | 
						
							| 53 |  | simpr |  | 
						
							| 54 | 53 | oveq1d |  | 
						
							| 55 |  | om0r |  | 
						
							| 56 | 15 55 | syl |  | 
						
							| 57 | 56 | ad2antrr |  | 
						
							| 58 | 54 57 | eqtrd |  | 
						
							| 59 |  | 0ss |  | 
						
							| 60 | 59 | a1i |  | 
						
							| 61 | 58 60 | eqsstrd |  | 
						
							| 62 |  | id |  | 
						
							| 63 | 62 | adantll |  | 
						
							| 64 |  | simpll |  | 
						
							| 65 | 64 | 3mix3d |  | 
						
							| 66 |  | omabs2 |  | 
						
							| 67 | 63 65 66 | syl2anc |  | 
						
							| 68 |  | ssidd |  | 
						
							| 69 | 67 68 | eqsstrd |  | 
						
							| 70 |  | onelon |  | 
						
							| 71 | 15 70 | sylan |  | 
						
							| 72 |  | on0eqel |  | 
						
							| 73 | 71 72 | syl |  | 
						
							| 74 | 61 69 73 | mpjaodan |  | 
						
							| 75 | 74 | iunssd |  | 
						
							| 76 |  | simpr |  | 
						
							| 77 | 76 8 | jctil |  | 
						
							| 78 |  | oen0 |  | 
						
							| 79 | 77 29 78 | sylancl |  | 
						
							| 80 | 77 9 | syl |  | 
						
							| 81 |  | 1onn |  | 
						
							| 82 |  | ondif2 |  | 
						
							| 83 | 8 81 82 | mpbir2an |  | 
						
							| 84 |  | oeordi |  | 
						
							| 85 | 80 83 84 | sylancl |  | 
						
							| 86 | 79 85 | mpd |  | 
						
							| 87 |  | oe0 |  | 
						
							| 88 | 8 87 | ax-mp |  | 
						
							| 89 | 88 | eqcomi |  | 
						
							| 90 | 89 | a1i |  | 
						
							| 91 | 86 90 7 | 3eltr4d |  | 
						
							| 92 |  | oveq1 |  | 
						
							| 93 |  | om1r |  | 
						
							| 94 | 15 93 | syl |  | 
						
							| 95 | 92 94 | sylan9eqr |  | 
						
							| 96 | 95 | sseq2d |  | 
						
							| 97 |  | ssidd |  | 
						
							| 98 | 91 96 97 | rspcedvd |  | 
						
							| 99 |  | ssiun |  | 
						
							| 100 | 98 99 | syl |  | 
						
							| 101 | 75 100 | eqssd |  | 
						
							| 102 | 101 | adantl |  | 
						
							| 103 | 52 102 | eleqtrd |  | 
						
							| 104 | 103 | ex |  | 
						
							| 105 | 104 | 3expia |  | 
						
							| 106 | 105 | com23 |  | 
						
							| 107 | 106 | imp |  | 
						
							| 108 | 37 107 | jaod |  | 
						
							| 109 | 20 108 | mpd |  | 
						
							| 110 | 109 | ex |  | 
						
							| 111 | 6 110 | jaod |  | 
						
							| 112 | 111 | imp |  |