Metamath Proof Explorer


Theorem omssubaddlem

Description: For any small margin E , we can find a covering approaching the outer measure of a set A by that margin. (Contributed by Thierry Arnoux, 18-Sep-2019) (Revised by AV, 4-Oct-2020)

Ref Expression
Hypotheses oms.m M=toOMeasR
oms.o φQV
oms.r φR:Q0+∞
omssubaddlem.a φAQ
omssubaddlem.m φMA
omssubaddlem.e φE+
Assertion omssubaddlem φxz𝒫domR|Azzω*wxRw<MA+E

Proof

Step Hyp Ref Expression
1 oms.m M=toOMeasR
2 oms.o φQV
3 oms.r φR:Q0+∞
4 omssubaddlem.a φAQ
5 omssubaddlem.m φMA
6 omssubaddlem.e φE+
7 6 rpred φE
8 5 7 readdcld φMA+E
9 8 rexrd φMA+E*
10 omsf QVR:Q0+∞toOMeasR:𝒫domR0+∞
11 2 3 10 syl2anc φtoOMeasR:𝒫domR0+∞
12 1 feq1i M:𝒫domR0+∞toOMeasR:𝒫domR0+∞
13 11 12 sylibr φM:𝒫domR0+∞
14 3 fdmd φdomR=Q
15 14 unieqd φdomR=Q
16 4 15 sseqtrrd φAdomR
17 2 uniexd φQV
18 4 17 jca φAQQV
19 ssexg AQQVAV
20 elpwg AVA𝒫domRAdomR
21 18 19 20 3syl φA𝒫domRAdomR
22 16 21 mpbird φA𝒫domR
23 13 22 ffvelcdmd φMA0+∞
24 elxrge0 MA0+∞MA*0MA
25 24 simprbi MA0+∞0MA
26 23 25 syl φ0MA
27 6 rpge0d φ0E
28 5 7 26 27 addge0d φ0MA+E
29 elxrge0 MA+E0+∞MA+E*0MA+E
30 9 28 29 sylanbrc φMA+E0+∞
31 1 fveq1i MA=toOMeasRA
32 omsfval QVR:Q0+∞AQtoOMeasRA=supranxz𝒫domR|Azzω*wxRw0+∞<
33 2 3 4 32 syl3anc φtoOMeasRA=supranxz𝒫domR|Azzω*wxRw0+∞<
34 31 33 eqtr2id φsupranxz𝒫domR|Azzω*wxRw0+∞<=MA
35 5 6 ltaddrpd φMA<MA+E
36 34 35 eqbrtrd φsupranxz𝒫domR|Azzω*wxRw0+∞<<MA+E
37 iccssxr 0+∞*
38 xrltso <Or*
39 soss 0+∞*<Or*<Or0+∞
40 37 38 39 mp2 <Or0+∞
41 40 a1i φ<Or0+∞
42 omscl QVR:Q0+∞A𝒫domRranxz𝒫domR|Azzω*wxRw0+∞
43 2 3 22 42 syl3anc φranxz𝒫domR|Azzω*wxRw0+∞
44 xrge0infss ranxz𝒫domR|Azzω*wxRw0+∞e0+∞tranxz𝒫domR|Azzω*wxRw¬t<et0+∞e<turanxz𝒫domR|Azzω*wxRwu<t
45 43 44 syl φe0+∞tranxz𝒫domR|Azzω*wxRw¬t<et0+∞e<turanxz𝒫domR|Azzω*wxRwu<t
46 41 45 infglb φMA+E0+∞supranxz𝒫domR|Azzω*wxRw0+∞<<MA+Euranxz𝒫domR|Azzω*wxRwu<MA+E
47 30 36 46 mp2and φuranxz𝒫domR|Azzω*wxRwu<MA+E
48 eqid xz𝒫domR|Azzω*wxRw=xz𝒫domR|Azzω*wxRw
49 esumex *wxRwV
50 48 49 elrnmpti uranxz𝒫domR|Azzω*wxRwxz𝒫domR|Azzωu=*wxRw
51 50 anbi1i uranxz𝒫domR|Azzω*wxRwu<MA+Exz𝒫domR|Azzωu=*wxRwu<MA+E
52 r19.41v xz𝒫domR|Azzωu=*wxRwu<MA+Exz𝒫domR|Azzωu=*wxRwu<MA+E
53 51 52 bitr4i uranxz𝒫domR|Azzω*wxRwu<MA+Exz𝒫domR|Azzωu=*wxRwu<MA+E
54 53 exbii uuranxz𝒫domR|Azzω*wxRwu<MA+Euxz𝒫domR|Azzωu=*wxRwu<MA+E
55 df-rex uranxz𝒫domR|Azzω*wxRwu<MA+Euuranxz𝒫domR|Azzω*wxRwu<MA+E
56 rexcom4 xz𝒫domR|Azzωuu=*wxRwu<MA+Euxz𝒫domR|Azzωu=*wxRwu<MA+E
57 54 55 56 3bitr4i uranxz𝒫domR|Azzω*wxRwu<MA+Exz𝒫domR|Azzωuu=*wxRwu<MA+E
58 breq1 u=*wxRwu<MA+E*wxRw<MA+E
59 58 biimpa u=*wxRwu<MA+E*wxRw<MA+E
60 59 exlimiv uu=*wxRwu<MA+E*wxRw<MA+E
61 60 reximi xz𝒫domR|Azzωuu=*wxRwu<MA+Exz𝒫domR|Azzω*wxRw<MA+E
62 57 61 sylbi uranxz𝒫domR|Azzω*wxRwu<MA+Exz𝒫domR|Azzω*wxRw<MA+E
63 47 62 syl φxz𝒫domR|Azzω*wxRw<MA+E