Description: For any small margin E , we can find a covering approaching the outer measure of a set A by that margin. (Contributed by Thierry Arnoux, 18-Sep-2019) (Revised by AV, 4-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oms.m | |
|
oms.o | |
||
oms.r | |
||
omssubaddlem.a | |
||
omssubaddlem.m | |
||
omssubaddlem.e | |
||
Assertion | omssubaddlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oms.m | |
|
2 | oms.o | |
|
3 | oms.r | |
|
4 | omssubaddlem.a | |
|
5 | omssubaddlem.m | |
|
6 | omssubaddlem.e | |
|
7 | 6 | rpred | |
8 | 5 7 | readdcld | |
9 | 8 | rexrd | |
10 | omsf | |
|
11 | 2 3 10 | syl2anc | |
12 | 1 | feq1i | |
13 | 11 12 | sylibr | |
14 | 3 | fdmd | |
15 | 14 | unieqd | |
16 | 4 15 | sseqtrrd | |
17 | 2 | uniexd | |
18 | 4 17 | jca | |
19 | ssexg | |
|
20 | elpwg | |
|
21 | 18 19 20 | 3syl | |
22 | 16 21 | mpbird | |
23 | 13 22 | ffvelcdmd | |
24 | elxrge0 | |
|
25 | 24 | simprbi | |
26 | 23 25 | syl | |
27 | 6 | rpge0d | |
28 | 5 7 26 27 | addge0d | |
29 | elxrge0 | |
|
30 | 9 28 29 | sylanbrc | |
31 | 1 | fveq1i | |
32 | omsfval | |
|
33 | 2 3 4 32 | syl3anc | |
34 | 31 33 | eqtr2id | |
35 | 5 6 | ltaddrpd | |
36 | 34 35 | eqbrtrd | |
37 | iccssxr | |
|
38 | xrltso | |
|
39 | soss | |
|
40 | 37 38 39 | mp2 | |
41 | 40 | a1i | |
42 | omscl | |
|
43 | 2 3 22 42 | syl3anc | |
44 | xrge0infss | |
|
45 | 43 44 | syl | |
46 | 41 45 | infglb | |
47 | 30 36 46 | mp2and | |
48 | eqid | |
|
49 | esumex | |
|
50 | 48 49 | elrnmpti | |
51 | 50 | anbi1i | |
52 | r19.41v | |
|
53 | 51 52 | bitr4i | |
54 | 53 | exbii | |
55 | df-rex | |
|
56 | rexcom4 | |
|
57 | 54 55 56 | 3bitr4i | |
58 | breq1 | |
|
59 | 58 | biimpa | |
60 | 59 | exlimiv | |
61 | 60 | reximi | |
62 | 57 61 | sylbi | |
63 | 47 62 | syl | |