Metamath Proof Explorer


Theorem opnreen

Description: Every nonempty open set is uncountable. (Contributed by Mario Carneiro, 26-Jul-2014) (Revised by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion opnreen AtopGenran.AA𝒫

Proof

Step Hyp Ref Expression
1 reex V
2 elssuni AtopGenran.AtopGenran.
3 uniretop =topGenran.
4 2 3 sseqtrrdi AtopGenran.A
5 ssdomg VAA
6 1 4 5 mpsyl AtopGenran.A
7 rpnnen 𝒫
8 domentr A𝒫A𝒫
9 6 7 8 sylancl AtopGenran.A𝒫
10 n0 AxxA
11 4 sselda AtopGenran.xAx
12 rpnnen2 𝒫01
13 rphalfcl y+y2+
14 13 rpred y+y2
15 resubcl xy2xy2
16 14 15 sylan2 xy+xy2
17 readdcl xy2x+y2
18 14 17 sylan2 xy+x+y2
19 simpl xy+x
20 ltsubrp xy2+xy2<x
21 13 20 sylan2 xy+xy2<x
22 ltaddrp xy2+x<x+y2
23 13 22 sylan2 xy+x<x+y2
24 16 19 18 21 23 lttrd xy+xy2<x+y2
25 iccen xy2x+y2xy2<x+y201xy2x+y2
26 16 18 24 25 syl3anc xy+01xy2x+y2
27 domentr 𝒫0101xy2x+y2𝒫xy2x+y2
28 12 26 27 sylancr xy+𝒫xy2x+y2
29 ovex xyx+yV
30 rpre y+y
31 resubcl xyxy
32 30 31 sylan2 xy+xy
33 32 rexrd xy+xy*
34 readdcl xyx+y
35 30 34 sylan2 xy+x+y
36 35 rexrd xy+x+y*
37 19 recnd xy+x
38 14 adantl xy+y2
39 38 recnd xy+y2
40 37 39 39 subsub4d xy+x-y2-y2=xy2+y2
41 30 adantl xy+y
42 41 recnd xy+y
43 42 2halvesd xy+y2+y2=y
44 43 oveq2d xy+xy2+y2=xy
45 40 44 eqtrd xy+x-y2-y2=xy
46 13 adantl xy+y2+
47 16 46 ltsubrpd xy+x-y2-y2<xy2
48 45 47 eqbrtrrd xy+xy<xy2
49 18 46 ltaddrpd xy+x+y2<x+y2+y2
50 37 39 39 addassd xy+x+y2+y2=x+y2+y2
51 43 oveq2d xy+x+y2+y2=x+y
52 50 51 eqtrd xy+x+y2+y2=x+y
53 49 52 breqtrd xy+x+y2<x+y
54 iccssioo xy*x+y*xy<xy2x+y2<x+yxy2x+y2xyx+y
55 33 36 48 53 54 syl22anc xy+xy2x+y2xyx+y
56 ssdomg xyx+yVxy2x+y2xyx+yxy2x+y2xyx+y
57 29 55 56 mpsyl xy+xy2x+y2xyx+y
58 domtr 𝒫xy2x+y2xy2x+y2xyx+y𝒫xyx+y
59 28 57 58 syl2anc xy+𝒫xyx+y
60 eqid abs2=abs2
61 60 bl2ioo xyxballabs2y=xyx+y
62 30 61 sylan2 xy+xballabs2y=xyx+y
63 59 62 breqtrrd xy+𝒫xballabs2y
64 11 63 sylan AtopGenran.xAy+𝒫xballabs2y
65 simplll AtopGenran.xAy+xballabs2yAAtopGenran.
66 simpr AtopGenran.xAy+xballabs2yAxballabs2yA
67 ssdomg AtopGenran.xballabs2yAxballabs2yA
68 65 66 67 sylc AtopGenran.xAy+xballabs2yAxballabs2yA
69 domtr 𝒫xballabs2yxballabs2yA𝒫A
70 64 68 69 syl2an2r AtopGenran.xAy+xballabs2yA𝒫A
71 eqid MetOpenabs2=MetOpenabs2
72 60 71 tgioo topGenran.=MetOpenabs2
73 72 eleq2i AtopGenran.AMetOpenabs2
74 60 rexmet abs2∞Met
75 71 mopni2 abs2∞MetAMetOpenabs2xAy+xballabs2yA
76 74 75 mp3an1 AMetOpenabs2xAy+xballabs2yA
77 73 76 sylanb AtopGenran.xAy+xballabs2yA
78 70 77 r19.29a AtopGenran.xA𝒫A
79 78 ex AtopGenran.xA𝒫A
80 79 exlimdv AtopGenran.xxA𝒫A
81 10 80 biimtrid AtopGenran.A𝒫A
82 81 imp AtopGenran.A𝒫A
83 sbth A𝒫𝒫AA𝒫
84 9 82 83 syl2an2r AtopGenran.AA𝒫