Description: In a total order, the finite intersections of the open rays generates the set of open intervals, but no more - these four collections form a subbasis for the order topology. (Contributed by Mario Carneiro, 3-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ordtval.1 | |
|
ordtval.2 | |
||
ordtval.3 | |
||
ordtval.4 | |
||
Assertion | ordtbas | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtval.1 | |
|
2 | ordtval.2 | |
|
3 | ordtval.3 | |
|
4 | ordtval.4 | |
|
5 | snex | |
|
6 | ssun2 | |
|
7 | 1 2 3 | ordtuni | |
8 | dmexg | |
|
9 | 1 8 | eqeltrid | |
10 | 7 9 | eqeltrrd | |
11 | uniexb | |
|
12 | 10 11 | sylibr | |
13 | ssexg | |
|
14 | 6 12 13 | sylancr | |
15 | elfiun | |
|
16 | 5 14 15 | sylancr | |
17 | fisn | |
|
18 | ssun1 | |
|
19 | 17 18 | eqsstri | |
20 | 19 | sseli | |
21 | 20 | a1i | |
22 | 1 2 3 4 | ordtbas2 | |
23 | ssun2 | |
|
24 | 22 23 | eqsstrdi | |
25 | 24 | sseld | |
26 | fipwuni | |
|
27 | 26 | sseli | |
28 | 27 | elpwid | |
29 | 28 | ad2antll | |
30 | 6 | unissi | |
31 | 30 7 | sseqtrrid | |
32 | 31 | adantr | |
33 | 29 32 | sstrd | |
34 | simprl | |
|
35 | 34 17 | eleqtrdi | |
36 | elsni | |
|
37 | 35 36 | syl | |
38 | 33 37 | sseqtrrd | |
39 | sseqin2 | |
|
40 | 38 39 | sylib | |
41 | 24 | sselda | |
42 | 41 | adantrl | |
43 | 40 42 | eqeltrd | |
44 | eleq1 | |
|
45 | 43 44 | syl5ibrcom | |
46 | 45 | rexlimdvva | |
47 | 21 25 46 | 3jaod | |
48 | 16 47 | sylbid | |
49 | 48 | ssrdv | |
50 | ssfii | |
|
51 | 12 50 | syl | |
52 | 51 | unssad | |
53 | fiss | |
|
54 | 12 6 53 | sylancl | |
55 | 22 54 | eqsstrrd | |
56 | 52 55 | unssd | |
57 | 49 56 | eqssd | |
58 | unass | |
|
59 | 57 58 | eqtr4di | |