| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtval.1 |
|
| 2 |
|
ordtval.2 |
|
| 3 |
|
ordtval.3 |
|
| 4 |
|
ordtval.4 |
|
| 5 |
|
snex |
|
| 6 |
|
ssun2 |
|
| 7 |
1 2 3
|
ordtuni |
|
| 8 |
|
dmexg |
|
| 9 |
1 8
|
eqeltrid |
|
| 10 |
7 9
|
eqeltrrd |
|
| 11 |
|
uniexb |
|
| 12 |
10 11
|
sylibr |
|
| 13 |
|
ssexg |
|
| 14 |
6 12 13
|
sylancr |
|
| 15 |
|
elfiun |
|
| 16 |
5 14 15
|
sylancr |
|
| 17 |
|
fisn |
|
| 18 |
|
ssun1 |
|
| 19 |
17 18
|
eqsstri |
|
| 20 |
19
|
sseli |
|
| 21 |
20
|
a1i |
|
| 22 |
1 2 3 4
|
ordtbas2 |
|
| 23 |
|
ssun2 |
|
| 24 |
22 23
|
eqsstrdi |
|
| 25 |
24
|
sseld |
|
| 26 |
|
fipwuni |
|
| 27 |
26
|
sseli |
|
| 28 |
27
|
elpwid |
|
| 29 |
28
|
ad2antll |
|
| 30 |
6
|
unissi |
|
| 31 |
30 7
|
sseqtrrid |
|
| 32 |
31
|
adantr |
|
| 33 |
29 32
|
sstrd |
|
| 34 |
|
simprl |
|
| 35 |
34 17
|
eleqtrdi |
|
| 36 |
|
elsni |
|
| 37 |
35 36
|
syl |
|
| 38 |
33 37
|
sseqtrrd |
|
| 39 |
|
sseqin2 |
|
| 40 |
38 39
|
sylib |
|
| 41 |
24
|
sselda |
|
| 42 |
41
|
adantrl |
|
| 43 |
40 42
|
eqeltrd |
|
| 44 |
|
eleq1 |
|
| 45 |
43 44
|
syl5ibrcom |
|
| 46 |
45
|
rexlimdvva |
|
| 47 |
21 25 46
|
3jaod |
|
| 48 |
16 47
|
sylbid |
|
| 49 |
48
|
ssrdv |
|
| 50 |
|
ssfii |
|
| 51 |
12 50
|
syl |
|
| 52 |
51
|
unssad |
|
| 53 |
|
fiss |
|
| 54 |
12 6 53
|
sylancl |
|
| 55 |
22 54
|
eqsstrrd |
|
| 56 |
52 55
|
unssd |
|
| 57 |
49 56
|
eqssd |
|
| 58 |
|
unass |
|
| 59 |
57 58
|
eqtr4di |
|