Metamath Proof Explorer


Theorem ostth2lem1

Description: Lemma for ostth2 , although it is just a simple statement about exponentials which does not involve any specifics of ostth2 . If a power is upper bounded by a linear term, the exponent must be less than one. Or in big-O notation, n e. o ( A ^ n ) for any 1 < A . (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses ostth2lem1.1 φA
ostth2lem1.2 φB
ostth2lem1.3 φnAnnB
Assertion ostth2lem1 φA1

Proof

Step Hyp Ref Expression
1 ostth2lem1.1 φA
2 ostth2lem1.2 φB
3 ostth2lem1.3 φnAnnB
4 2re 2
5 2 adantr φ1<AB
6 remulcl 2B2B
7 4 5 6 sylancr φ1<A2B
8 simpr φ1<A1<A
9 1re 1
10 1 adantr φ1<AA
11 difrp 1A1<AA1+
12 9 10 11 sylancr φ1<A1<AA1+
13 8 12 mpbid φ1<AA1+
14 7 13 rerpdivcld φ1<A2BA1
15 expnbnd 2BA1A1<Ak2BA1<Ak
16 14 10 8 15 syl3anc φ1<Ak2BA1<Ak
17 nnnn0 kk0
18 reexpcl Ak0Ak
19 10 17 18 syl2an φ1<AkAk
20 14 adantr φ1<Ak2BA1
21 13 rpred φ1<AA1
22 21 adantr φ1<AkA1
23 nnre kk
24 23 adantl φ1<Akk
25 22 24 remulcld φ1<AkA1k
26 25 19 remulcld φ1<AkA1kAk
27 1 ad2antrr φ1<AkA
28 2nn 2
29 simpr φ1<Akk
30 nnmulcl 2k2k
31 28 29 30 sylancr φ1<Ak2k
32 31 nnnn0d φ1<Ak2k0
33 27 32 reexpcld φ1<AkA2k
34 31 nnred φ1<Ak2k
35 2 ad2antrr φ1<AkB
36 34 35 remulcld φ1<Ak2kB
37 0red φ1<A0
38 9 a1i φ1<A1
39 0lt1 0<1
40 39 a1i φ1<A0<1
41 37 38 10 40 8 lttrd φ1<A0<A
42 10 41 elrpd φ1<AA+
43 nnz kk
44 rpexpcl A+kAk+
45 42 43 44 syl2an φ1<AkAk+
46 peano2re A1kA1k+1
47 25 46 syl φ1<AkA1k+1
48 25 ltp1d φ1<AkA1k<A1k+1
49 17 adantl φ1<Akk0
50 42 adantr φ1<AkA+
51 50 rpge0d φ1<Ak0A
52 bernneq2 Ak00AA1k+1Ak
53 27 49 51 52 syl3anc φ1<AkA1k+1Ak
54 25 47 19 48 53 ltletrd φ1<AkA1k<Ak
55 25 19 45 54 ltmul1dd φ1<AkA1kAk<AkAk
56 24 recnd φ1<Akk
57 56 2timesd φ1<Ak2k=k+k
58 57 oveq2d φ1<AkA2k=Ak+k
59 27 recnd φ1<AkA
60 59 49 49 expaddd φ1<AkAk+k=AkAk
61 58 60 eqtrd φ1<AkA2k=AkAk
62 55 61 breqtrrd φ1<AkA1kAk<A2k
63 oveq2 n=2kAn=A2k
64 oveq1 n=2knB=2kB
65 63 64 breq12d n=2kAnnBA2k2kB
66 3 ralrimiva φnAnnB
67 66 ad2antrr φ1<AknAnnB
68 65 67 31 rspcdva φ1<AkA2k2kB
69 26 33 36 62 68 ltletrd φ1<AkA1kAk<2kB
70 22 recnd φ1<AkA1
71 19 recnd φ1<AkAk
72 70 71 56 mul32d φ1<AkA1Akk=A1kAk
73 2cnd φ1<Ak2
74 35 recnd φ1<AkB
75 73 74 56 mul32d φ1<Ak2Bk=2kB
76 69 72 75 3brtr4d φ1<AkA1Akk<2Bk
77 22 19 remulcld φ1<AkA1Ak
78 7 adantr φ1<Ak2B
79 nngt0 k0<k
80 79 adantl φ1<Ak0<k
81 ltmul1 A1Ak2Bk0<kA1Ak<2BA1Akk<2Bk
82 77 78 24 80 81 syl112anc φ1<AkA1Ak<2BA1Akk<2Bk
83 76 82 mpbird φ1<AkA1Ak<2B
84 13 rpgt0d φ1<A0<A1
85 84 adantr φ1<Ak0<A1
86 ltmuldiv2 Ak2BA10<A1A1Ak<2BAk<2BA1
87 19 78 22 85 86 syl112anc φ1<AkA1Ak<2BAk<2BA1
88 83 87 mpbid φ1<AkAk<2BA1
89 19 20 88 ltnsymd φ1<Ak¬2BA1<Ak
90 89 nrexdv φ1<A¬k2BA1<Ak
91 16 90 pm2.65da φ¬1<A
92 lenlt A1A1¬1<A
93 1 9 92 sylancl φA1¬1<A
94 91 93 mpbird φA1