Metamath Proof Explorer


Theorem phtpyco2

Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses phtpyco2.f φFIICnJ
phtpyco2.g φGIICnJ
phtpyco2.p φPJCnK
phtpyco2.h φHFPHtpyJG
Assertion phtpyco2 φPHPFPHtpyKPG

Proof

Step Hyp Ref Expression
1 phtpyco2.f φFIICnJ
2 phtpyco2.g φGIICnJ
3 phtpyco2.p φPJCnK
4 phtpyco2.h φHFPHtpyJG
5 cnco FIICnJPJCnKPFIICnK
6 1 3 5 syl2anc φPFIICnK
7 cnco GIICnJPJCnKPGIICnK
8 2 3 7 syl2anc φPGIICnK
9 1 2 phtpyhtpy φFPHtpyJGFIIHtpyJG
10 9 4 sseldd φHFIIHtpyJG
11 1 2 3 10 htpyco2 φPHPFIIHtpyKPG
12 1 2 4 phtpyi φs010Hs=F01Hs=F1
13 12 simpld φs010Hs=F0
14 13 fveq2d φs01P0Hs=PF0
15 iitopon IITopOn01
16 txtopon IITopOn01IITopOn01II×tIITopOn01×01
17 15 15 16 mp2an II×tIITopOn01×01
18 cntop2 FIICnJJTop
19 1 18 syl φJTop
20 toptopon2 JTopJTopOnJ
21 19 20 sylib φJTopOnJ
22 1 2 phtpycn φFPHtpyJGII×tIICnJ
23 22 4 sseldd φHII×tIICnJ
24 cnf2 II×tIITopOn01×01JTopOnJHII×tIICnJH:01×01J
25 17 21 23 24 mp3an2i φH:01×01J
26 0elunit 001
27 simpr φs01s01
28 opelxpi 001s010s01×01
29 26 27 28 sylancr φs010s01×01
30 fvco3 H:01×01J0s01×01PH0s=PH0s
31 25 29 30 syl2an2r φs01PH0s=PH0s
32 df-ov 0PHs=PH0s
33 df-ov 0Hs=H0s
34 33 fveq2i P0Hs=PH0s
35 31 32 34 3eqtr4g φs010PHs=P0Hs
36 iiuni 01=II
37 eqid J=J
38 36 37 cnf FIICnJF:01J
39 1 38 syl φF:01J
40 39 adantr φs01F:01J
41 fvco3 F:01J001PF0=PF0
42 40 26 41 sylancl φs01PF0=PF0
43 14 35 42 3eqtr4d φs010PHs=PF0
44 12 simprd φs011Hs=F1
45 44 fveq2d φs01P1Hs=PF1
46 1elunit 101
47 opelxpi 101s011s01×01
48 46 27 47 sylancr φs011s01×01
49 fvco3 H:01×01J1s01×01PH1s=PH1s
50 25 48 49 syl2an2r φs01PH1s=PH1s
51 df-ov 1PHs=PH1s
52 df-ov 1Hs=H1s
53 52 fveq2i P1Hs=PH1s
54 50 51 53 3eqtr4g φs011PHs=P1Hs
55 fvco3 F:01J101PF1=PF1
56 40 46 55 sylancl φs01PF1=PF1
57 45 54 56 3eqtr4d φs011PHs=PF1
58 6 8 11 43 57 isphtpyd φPHPFPHtpyKPG