Step |
Hyp |
Ref |
Expression |
1 |
|
phtpyco2.f |
|
2 |
|
phtpyco2.g |
|
3 |
|
phtpyco2.p |
|
4 |
|
phtpyco2.h |
|
5 |
|
cnco |
|
6 |
1 3 5
|
syl2anc |
|
7 |
|
cnco |
|
8 |
2 3 7
|
syl2anc |
|
9 |
1 2
|
phtpyhtpy |
|
10 |
9 4
|
sseldd |
|
11 |
1 2 3 10
|
htpyco2 |
|
12 |
1 2 4
|
phtpyi |
|
13 |
12
|
simpld |
|
14 |
13
|
fveq2d |
|
15 |
|
iitopon |
|
16 |
|
txtopon |
|
17 |
15 15 16
|
mp2an |
|
18 |
|
cntop2 |
|
19 |
1 18
|
syl |
|
20 |
|
toptopon2 |
|
21 |
19 20
|
sylib |
|
22 |
1 2
|
phtpycn |
|
23 |
22 4
|
sseldd |
|
24 |
|
cnf2 |
|
25 |
17 21 23 24
|
mp3an2i |
|
26 |
|
0elunit |
|
27 |
|
simpr |
|
28 |
|
opelxpi |
|
29 |
26 27 28
|
sylancr |
|
30 |
|
fvco3 |
|
31 |
25 29 30
|
syl2an2r |
|
32 |
|
df-ov |
|
33 |
|
df-ov |
|
34 |
33
|
fveq2i |
|
35 |
31 32 34
|
3eqtr4g |
|
36 |
|
iiuni |
|
37 |
|
eqid |
|
38 |
36 37
|
cnf |
|
39 |
1 38
|
syl |
|
40 |
39
|
adantr |
|
41 |
|
fvco3 |
|
42 |
40 26 41
|
sylancl |
|
43 |
14 35 42
|
3eqtr4d |
|
44 |
12
|
simprd |
|
45 |
44
|
fveq2d |
|
46 |
|
1elunit |
|
47 |
|
opelxpi |
|
48 |
46 27 47
|
sylancr |
|
49 |
|
fvco3 |
|
50 |
25 48 49
|
syl2an2r |
|
51 |
|
df-ov |
|
52 |
|
df-ov |
|
53 |
52
|
fveq2i |
|
54 |
50 51 53
|
3eqtr4g |
|
55 |
|
fvco3 |
|
56 |
40 46 55
|
sylancl |
|
57 |
45 54 56
|
3eqtr4d |
|
58 |
6 8 11 43 57
|
isphtpyd |
|