Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | phtpyco2.f | |
|
phtpyco2.g | |
||
phtpyco2.p | |
||
phtpyco2.h | |
||
Assertion | phtpyco2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phtpyco2.f | |
|
2 | phtpyco2.g | |
|
3 | phtpyco2.p | |
|
4 | phtpyco2.h | |
|
5 | cnco | |
|
6 | 1 3 5 | syl2anc | |
7 | cnco | |
|
8 | 2 3 7 | syl2anc | |
9 | 1 2 | phtpyhtpy | |
10 | 9 4 | sseldd | |
11 | 1 2 3 10 | htpyco2 | |
12 | 1 2 4 | phtpyi | |
13 | 12 | simpld | |
14 | 13 | fveq2d | |
15 | iitopon | |
|
16 | txtopon | |
|
17 | 15 15 16 | mp2an | |
18 | cntop2 | |
|
19 | 1 18 | syl | |
20 | toptopon2 | |
|
21 | 19 20 | sylib | |
22 | 1 2 | phtpycn | |
23 | 22 4 | sseldd | |
24 | cnf2 | |
|
25 | 17 21 23 24 | mp3an2i | |
26 | 0elunit | |
|
27 | simpr | |
|
28 | opelxpi | |
|
29 | 26 27 28 | sylancr | |
30 | fvco3 | |
|
31 | 25 29 30 | syl2an2r | |
32 | df-ov | |
|
33 | df-ov | |
|
34 | 33 | fveq2i | |
35 | 31 32 34 | 3eqtr4g | |
36 | iiuni | |
|
37 | eqid | |
|
38 | 36 37 | cnf | |
39 | 1 38 | syl | |
40 | 39 | adantr | |
41 | fvco3 | |
|
42 | 40 26 41 | sylancl | |
43 | 14 35 42 | 3eqtr4d | |
44 | 12 | simprd | |
45 | 44 | fveq2d | |
46 | 1elunit | |
|
47 | opelxpi | |
|
48 | 46 27 47 | sylancr | |
49 | fvco3 | |
|
50 | 25 48 49 | syl2an2r | |
51 | df-ov | |
|
52 | df-ov | |
|
53 | 52 | fveq2i | |
54 | 50 51 53 | 3eqtr4g | |
55 | fvco3 | |
|
56 | 40 46 55 | sylancl | |
57 | 45 54 56 | 3eqtr4d | |
58 | 6 8 11 43 57 | isphtpyd | |