Metamath Proof Explorer


Theorem ply1degltlss

Description: The space S of the univariate polynomials of degree less than N forms a vector subspace. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses ply1degltlss.p P=Poly1R
ply1degltlss.d D=deg1R
ply1degltlss.1 S=D-1−∞N
ply1degltlss.3 φN0
ply1degltlss.2 φRRing
Assertion ply1degltlss φSLSubSpP

Proof

Step Hyp Ref Expression
1 ply1degltlss.p P=Poly1R
2 ply1degltlss.d D=deg1R
3 ply1degltlss.1 S=D-1−∞N
4 ply1degltlss.3 φN0
5 ply1degltlss.2 φRRing
6 1 ply1sca RRingR=ScalarP
7 5 6 syl φR=ScalarP
8 eqidd φBaseR=BaseR
9 eqidd φBaseP=BaseP
10 eqidd φ+P=+P
11 eqidd φP=P
12 eqidd φLSubSpP=LSubSpP
13 cnvimass D-1−∞NdomD
14 3 13 eqsstri SdomD
15 eqid BaseP=BaseP
16 2 1 15 deg1xrf D:BaseP*
17 16 fdmi domD=BaseP
18 14 17 sseqtri SBaseP
19 18 a1i φSBaseP
20 16 a1i φD:BaseP*
21 20 ffnd φDFnBaseP
22 1 ply1ring RRingPRing
23 eqid 0P=0P
24 15 23 ring0cl PRing0PBaseP
25 5 22 24 3syl φ0PBaseP
26 2 1 23 deg1z RRingD0P=−∞
27 5 26 syl φD0P=−∞
28 mnfxr −∞*
29 28 a1i φ−∞*
30 4 nn0red φN
31 30 rexrd φN*
32 29 xrleidd φ−∞−∞
33 30 mnfltd φ−∞<N
34 29 31 29 32 33 elicod φ−∞−∞N
35 27 34 eqeltrd φD0P−∞N
36 21 25 35 elpreimad φ0PD-1−∞N
37 36 3 eleqtrrdi φ0PS
38 37 ne0d φS
39 simpl φxBaseRaSbSφ
40 eqid +P=+P
41 1 ply1lmod RRingPLMod
42 5 41 syl φPLMod
43 42 adantr φxBaseRaSbSPLMod
44 43 lmodgrpd φxBaseRaSbSPGrp
45 simpr1 φxBaseRaSbSxBaseR
46 7 fveq2d φBaseR=BaseScalarP
47 46 adantr φxBaseRaSbSBaseR=BaseScalarP
48 45 47 eleqtrd φxBaseRaSbSxBaseScalarP
49 simpr2 φxBaseRaSbSaS
50 18 49 sselid φxBaseRaSbSaBaseP
51 eqid ScalarP=ScalarP
52 eqid P=P
53 eqid BaseScalarP=BaseScalarP
54 15 51 52 53 lmodvscl PLModxBaseScalarPaBasePxPaBaseP
55 43 48 50 54 syl3anc φxBaseRaSbSxPaBaseP
56 simpr3 φxBaseRaSbSbS
57 18 56 sselid φxBaseRaSbSbBaseP
58 15 40 44 55 57 grpcld φxBaseRaSbSxPa+PbBaseP
59 5 adantr φxBaseRaSbSRRing
60 1red φ1
61 30 60 resubcld φN1
62 61 rexrd φN1*
63 62 adantr φxBaseRaSbSN1*
64 16 a1i φxBaseRaSbSD:BaseP*
65 64 55 ffvelcdmd φxBaseRaSbSDxPa*
66 64 50 ffvelcdmd φxBaseRaSbSDa*
67 eqid BaseR=BaseR
68 1 2 59 15 67 52 45 50 deg1vscale φxBaseRaSbSDxPaDa
69 1 2 3 4 5 15 ply1degltel φaSaBasePDaN1
70 69 simplbda φaSDaN1
71 49 70 syldan φxBaseRaSbSDaN1
72 65 66 63 68 71 xrletrd φxBaseRaSbSDxPaN1
73 1 2 3 4 5 15 ply1degltel φbSbBasePDbN1
74 73 simplbda φbSDbN1
75 56 74 syldan φxBaseRaSbSDbN1
76 1 2 59 15 40 55 57 63 72 75 deg1addle2 φxBaseRaSbSDxPa+PbN1
77 1 2 3 4 5 15 ply1degltel φxPa+PbSxPa+PbBasePDxPa+PbN1
78 77 biimpar φxPa+PbBasePDxPa+PbN1xPa+PbS
79 39 58 76 78 syl12anc φxBaseRaSbSxPa+PbS
80 7 8 9 10 11 12 19 38 79 islssd φSLSubSpP