Metamath Proof Explorer


Theorem pntlemi

Description: Lemma for pnt . Eliminate some assumptions from pntlemj . (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R=a+ψaa
pntlem1.a φA+
pntlem1.b φB+
pntlem1.l φL01
pntlem1.d D=A+1
pntlem1.f F=11DL32BD2
pntlem1.u φU+
pntlem1.u2 φUA
pntlem1.e E=UD
pntlem1.k K=eBE
pntlem1.y φY+1Y
pntlem1.x φX+Y<X
pntlem1.c φC+
pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
pntlem1.z φZW+∞
pntlem1.m M=logXlogK+1
pntlem1.n N=logZlogK2
pntlem1.U φzY+∞RzzU
pntlem1.K φyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
pntlem1.o O=ZKJ+1+1ZKJ
Assertion pntlemi φJM..^NUELE8logZnOUnRZnZlogn

Proof

Step Hyp Ref Expression
1 pntlem1.r R=a+ψaa
2 pntlem1.a φA+
3 pntlem1.b φB+
4 pntlem1.l φL01
5 pntlem1.d D=A+1
6 pntlem1.f F=11DL32BD2
7 pntlem1.u φU+
8 pntlem1.u2 φUA
9 pntlem1.e E=UD
10 pntlem1.k K=eBE
11 pntlem1.y φY+1Y
12 pntlem1.x φX+Y<X
13 pntlem1.c φC+
14 pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
15 pntlem1.z φZW+∞
16 pntlem1.m M=logXlogK+1
17 pntlem1.n N=logZlogK2
18 pntlem1.U φzY+∞RzzU
19 pntlem1.K φyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
20 pntlem1.o O=ZKJ+1+1ZKJ
21 breq2 z=xy<zy<x
22 oveq2 z=x1+LEz=1+LEx
23 22 breq1d z=x1+LEz<Ky1+LEx<Ky
24 21 23 anbi12d z=xy<z1+LEz<Kyy<x1+LEx<Ky
25 id z=xz=x
26 25 22 oveq12d z=xz1+LEz=x1+LEx
27 26 raleqdv z=xuz1+LEzRuuEux1+LExRuuE
28 24 27 anbi12d z=xy<z1+LEz<Kyuz1+LEzRuuEy<x1+LEx<Kyux1+LExRuuE
29 28 cbvrexvw z+y<z1+LEz<Kyuz1+LEzRuuEx+y<x1+LEx<Kyux1+LExRuuE
30 breq1 y=KJy<xKJ<x
31 oveq2 y=KJKy=KKJ
32 31 breq2d y=KJ1+LEx<Ky1+LEx<KKJ
33 30 32 anbi12d y=KJy<x1+LEx<KyKJ<x1+LEx<KKJ
34 33 anbi1d y=KJy<x1+LEx<Kyux1+LExRuuEKJ<x1+LEx<KKJux1+LExRuuE
35 34 rexbidv y=KJx+y<x1+LEx<Kyux1+LExRuuEx+KJ<x1+LEx<KKJux1+LExRuuE
36 29 35 bitrid y=KJz+y<z1+LEz<Kyuz1+LEzRuuEx+KJ<x1+LEx<KKJux1+LExRuuE
37 19 adantr φJM..^NyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
38 1 2 3 4 5 6 7 8 9 10 pntlemc φE+K+E011<KUE+
39 38 simp2d φK+
40 elfzoelz JM..^NJ
41 rpexpcl K+JKJ+
42 39 40 41 syl2an φJM..^NKJ+
43 42 rpred φJM..^NKJ
44 elfzofz JM..^NJMN
45 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemh φJMNX<KJKJZ
46 44 45 sylan2 φJM..^NX<KJKJZ
47 46 simpld φJM..^NX<KJ
48 12 simpld φX+
49 48 adantr φJM..^NX+
50 rpxr X+X*
51 elioopnf X*KJX+∞KJX<KJ
52 49 50 51 3syl φJM..^NKJX+∞KJX<KJ
53 43 47 52 mpbir2and φJM..^NKJX+∞
54 36 37 53 rspcdva φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuE
55 2 ad2antrr φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuEA+
56 3 ad2antrr φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuEB+
57 4 ad2antrr φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuEL01
58 7 ad2antrr φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuEU+
59 8 ad2antrr φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuEUA
60 11 ad2antrr φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuEY+1Y
61 12 ad2antrr φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuEX+Y<X
62 13 ad2antrr φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuEC+
63 15 ad2antrr φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuEZW+∞
64 18 ad2antrr φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuEzY+∞RzzU
65 19 ad2antrr φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuEyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
66 simprl φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuEx+
67 simprr φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuEKJ<x1+LEx<KKJux1+LExRuuE
68 simplr φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuEJM..^N
69 eqid Z1+LEx+1Zx=Z1+LEx+1Zx
70 1 55 56 57 5 6 58 59 9 10 60 61 62 14 63 16 17 64 65 20 66 67 68 69 pntlemj φJM..^Nx+KJ<x1+LEx<KKJux1+LExRuuEUELE8logZnOUnRZnZlogn
71 54 70 rexlimddv φJM..^NUELE8logZnOUnRZnZlogn