Description: Lemma for pnt . Eliminate some assumptions from pntlemj . (Contributed by Mario Carneiro, 13-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pntlem1.r | |
|
pntlem1.a | |
||
pntlem1.b | |
||
pntlem1.l | |
||
pntlem1.d | |
||
pntlem1.f | |
||
pntlem1.u | |
||
pntlem1.u2 | |
||
pntlem1.e | |
||
pntlem1.k | |
||
pntlem1.y | |
||
pntlem1.x | |
||
pntlem1.c | |
||
pntlem1.w | |
||
pntlem1.z | |
||
pntlem1.m | |
||
pntlem1.n | |
||
pntlem1.U | |
||
pntlem1.K | |
||
pntlem1.o | |
||
Assertion | pntlemi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntlem1.r | |
|
2 | pntlem1.a | |
|
3 | pntlem1.b | |
|
4 | pntlem1.l | |
|
5 | pntlem1.d | |
|
6 | pntlem1.f | |
|
7 | pntlem1.u | |
|
8 | pntlem1.u2 | |
|
9 | pntlem1.e | |
|
10 | pntlem1.k | |
|
11 | pntlem1.y | |
|
12 | pntlem1.x | |
|
13 | pntlem1.c | |
|
14 | pntlem1.w | |
|
15 | pntlem1.z | |
|
16 | pntlem1.m | |
|
17 | pntlem1.n | |
|
18 | pntlem1.U | |
|
19 | pntlem1.K | |
|
20 | pntlem1.o | |
|
21 | breq2 | |
|
22 | oveq2 | |
|
23 | 22 | breq1d | |
24 | 21 23 | anbi12d | |
25 | id | |
|
26 | 25 22 | oveq12d | |
27 | 26 | raleqdv | |
28 | 24 27 | anbi12d | |
29 | 28 | cbvrexvw | |
30 | breq1 | |
|
31 | oveq2 | |
|
32 | 31 | breq2d | |
33 | 30 32 | anbi12d | |
34 | 33 | anbi1d | |
35 | 34 | rexbidv | |
36 | 29 35 | bitrid | |
37 | 19 | adantr | |
38 | 1 2 3 4 5 6 7 8 9 10 | pntlemc | |
39 | 38 | simp2d | |
40 | elfzoelz | |
|
41 | rpexpcl | |
|
42 | 39 40 41 | syl2an | |
43 | 42 | rpred | |
44 | elfzofz | |
|
45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | pntlemh | |
46 | 44 45 | sylan2 | |
47 | 46 | simpld | |
48 | 12 | simpld | |
49 | 48 | adantr | |
50 | rpxr | |
|
51 | elioopnf | |
|
52 | 49 50 51 | 3syl | |
53 | 43 47 52 | mpbir2and | |
54 | 36 37 53 | rspcdva | |
55 | 2 | ad2antrr | |
56 | 3 | ad2antrr | |
57 | 4 | ad2antrr | |
58 | 7 | ad2antrr | |
59 | 8 | ad2antrr | |
60 | 11 | ad2antrr | |
61 | 12 | ad2antrr | |
62 | 13 | ad2antrr | |
63 | 15 | ad2antrr | |
64 | 18 | ad2antrr | |
65 | 19 | ad2antrr | |
66 | simprl | |
|
67 | simprr | |
|
68 | simplr | |
|
69 | eqid | |
|
70 | 1 55 56 57 5 6 58 59 9 10 60 61 62 14 63 16 17 64 65 20 66 67 68 69 | pntlemj | |
71 | 54 70 | rexlimddv | |