Metamath Proof Explorer


Theorem pntlemn

Description: Lemma for pnt . The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R=a+ψaa
pntlem1.a φA+
pntlem1.b φB+
pntlem1.l φL01
pntlem1.d D=A+1
pntlem1.f F=11DL32BD2
pntlem1.u φU+
pntlem1.u2 φUA
pntlem1.e E=UD
pntlem1.k K=eBE
pntlem1.y φY+1Y
pntlem1.x φX+Y<X
pntlem1.c φC+
pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
pntlem1.z φZW+∞
pntlem1.m M=logXlogK+1
pntlem1.n N=logZlogK2
pntlem1.U φzY+∞RzzU
Assertion pntlemn φJJZY0UJRZJZlogJ

Proof

Step Hyp Ref Expression
1 pntlem1.r R=a+ψaa
2 pntlem1.a φA+
3 pntlem1.b φB+
4 pntlem1.l φL01
5 pntlem1.d D=A+1
6 pntlem1.f F=11DL32BD2
7 pntlem1.u φU+
8 pntlem1.u2 φUA
9 pntlem1.e E=UD
10 pntlem1.k K=eBE
11 pntlem1.y φY+1Y
12 pntlem1.x φX+Y<X
13 pntlem1.c φC+
14 pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
15 pntlem1.z φZW+∞
16 pntlem1.m M=logXlogK+1
17 pntlem1.n N=logZlogK2
18 pntlem1.U φzY+∞RzzU
19 7 adantr φJJZYU+
20 19 rpred φJJZYU
21 simprl φJJZYJ
22 20 21 nndivred φJJZYUJ
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pntlemb φZ+1<ZeZZZY4LEZlogXlogK+2logZlogK4U3+CUELE232BlogZ
24 23 simp1d φZ+
25 24 adantr φJJZYZ+
26 21 nnrpd φJJZYJ+
27 25 26 rpdivcld φJJZYZJ+
28 1 pntrf R:+
29 28 ffvelcdmi ZJ+RZJ
30 27 29 syl φJJZYRZJ
31 30 25 rerpdivcld φJJZYRZJZ
32 31 recnd φJJZYRZJZ
33 32 abscld φJJZYRZJZ
34 22 33 resubcld φJJZYUJRZJZ
35 26 relogcld φJJZYlogJ
36 30 recnd φJJZYRZJ
37 25 rpcnne0d φJJZYZZ0
38 26 rpcnne0d φJJZYJJ0
39 divdiv2 RZJZZ0JJ0RZJZJ=RZJ JZ
40 36 37 38 39 syl3anc φJJZYRZJZJ=RZJ JZ
41 21 nncnd φJJZYJ
42 div23 RZJJZZ0RZJ JZ=RZJZ J
43 36 41 37 42 syl3anc φJJZYRZJ JZ=RZJZ J
44 40 43 eqtrd φJJZYRZJZJ=RZJZ J
45 44 fveq2d φJJZYRZJZJ=RZJZ J
46 32 41 absmuld φJJZYRZJZ J=RZJZJ
47 26 rprege0d φJJZYJ0J
48 absid J0JJ=J
49 47 48 syl φJJZYJ=J
50 49 oveq2d φJJZYRZJZJ=RZJZ J
51 45 46 50 3eqtrd φJJZYRZJZJ=RZJZ J
52 fveq2 z=ZJRz=RZJ
53 id z=ZJz=ZJ
54 52 53 oveq12d z=ZJRzz=RZJZJ
55 54 fveq2d z=ZJRzz=RZJZJ
56 55 breq1d z=ZJRzzURZJZJU
57 18 adantr φJJZYzY+∞RzzU
58 27 rpred φJJZYZJ
59 simprr φJJZYJZY
60 26 rpred φJJZYJ
61 25 rpred φJJZYZ
62 11 simpld φY+
63 62 adantr φJJZYY+
64 60 61 63 lemuldiv2d φJJZYY JZJZY
65 59 64 mpbird φJJZYY JZ
66 63 rpred φJJZYY
67 66 61 26 lemuldivd φJJZYY JZYZJ
68 65 67 mpbid φJJZYYZJ
69 elicopnf YZJY+∞ZJYZJ
70 66 69 syl φJJZYZJY+∞ZJYZJ
71 58 68 70 mpbir2and φJJZYZJY+∞
72 56 57 71 rspcdva φJJZYRZJZJU
73 51 72 eqbrtrrd φJJZYRZJZ JU
74 33 20 26 lemuldivd φJJZYRZJZ JURZJZUJ
75 73 74 mpbid φJJZYRZJZUJ
76 22 33 subge0d φJJZY0UJRZJZRZJZUJ
77 75 76 mpbird φJJZY0UJRZJZ
78 log1 log1=0
79 nnge1 J1J
80 79 ad2antrl φJJZY1J
81 1rp 1+
82 logleb 1+J+1Jlog1logJ
83 81 26 82 sylancr φJJZY1Jlog1logJ
84 80 83 mpbid φJJZYlog1logJ
85 78 84 eqbrtrrid φJJZY0logJ
86 34 35 77 85 mulge0d φJJZY0UJRZJZlogJ