| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r |  | 
						
							| 2 |  | pntlem1.a |  | 
						
							| 3 |  | pntlem1.b |  | 
						
							| 4 |  | pntlem1.l |  | 
						
							| 5 |  | pntlem1.d |  | 
						
							| 6 |  | pntlem1.f |  | 
						
							| 7 |  | pntlem1.u |  | 
						
							| 8 |  | pntlem1.u2 |  | 
						
							| 9 |  | pntlem1.e |  | 
						
							| 10 |  | pntlem1.k |  | 
						
							| 11 |  | pntlem1.y |  | 
						
							| 12 |  | pntlem1.x |  | 
						
							| 13 |  | pntlem1.c |  | 
						
							| 14 |  | pntlem1.w |  | 
						
							| 15 |  | pntlem1.z |  | 
						
							| 16 |  | pntlem1.m |  | 
						
							| 17 |  | pntlem1.n |  | 
						
							| 18 |  | pntlem1.U |  | 
						
							| 19 | 7 | adantr |  | 
						
							| 20 | 19 | rpred |  | 
						
							| 21 |  | simprl |  | 
						
							| 22 | 20 21 | nndivred |  | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pntlemb |  | 
						
							| 24 | 23 | simp1d |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 21 | nnrpd |  | 
						
							| 27 | 25 26 | rpdivcld |  | 
						
							| 28 | 1 | pntrf |  | 
						
							| 29 | 28 | ffvelcdmi |  | 
						
							| 30 | 27 29 | syl |  | 
						
							| 31 | 30 25 | rerpdivcld |  | 
						
							| 32 | 31 | recnd |  | 
						
							| 33 | 32 | abscld |  | 
						
							| 34 | 22 33 | resubcld |  | 
						
							| 35 | 26 | relogcld |  | 
						
							| 36 | 30 | recnd |  | 
						
							| 37 | 25 | rpcnne0d |  | 
						
							| 38 | 26 | rpcnne0d |  | 
						
							| 39 |  | divdiv2 |  | 
						
							| 40 | 36 37 38 39 | syl3anc |  | 
						
							| 41 | 21 | nncnd |  | 
						
							| 42 |  | div23 |  | 
						
							| 43 | 36 41 37 42 | syl3anc |  | 
						
							| 44 | 40 43 | eqtrd |  | 
						
							| 45 | 44 | fveq2d |  | 
						
							| 46 | 32 41 | absmuld |  | 
						
							| 47 | 26 | rprege0d |  | 
						
							| 48 |  | absid |  | 
						
							| 49 | 47 48 | syl |  | 
						
							| 50 | 49 | oveq2d |  | 
						
							| 51 | 45 46 50 | 3eqtrd |  | 
						
							| 52 |  | fveq2 |  | 
						
							| 53 |  | id |  | 
						
							| 54 | 52 53 | oveq12d |  | 
						
							| 55 | 54 | fveq2d |  | 
						
							| 56 | 55 | breq1d |  | 
						
							| 57 | 18 | adantr |  | 
						
							| 58 | 27 | rpred |  | 
						
							| 59 |  | simprr |  | 
						
							| 60 | 26 | rpred |  | 
						
							| 61 | 25 | rpred |  | 
						
							| 62 | 11 | simpld |  | 
						
							| 63 | 62 | adantr |  | 
						
							| 64 | 60 61 63 | lemuldiv2d |  | 
						
							| 65 | 59 64 | mpbird |  | 
						
							| 66 | 63 | rpred |  | 
						
							| 67 | 66 61 26 | lemuldivd |  | 
						
							| 68 | 65 67 | mpbid |  | 
						
							| 69 |  | elicopnf |  | 
						
							| 70 | 66 69 | syl |  | 
						
							| 71 | 58 68 70 | mpbir2and |  | 
						
							| 72 | 56 57 71 | rspcdva |  | 
						
							| 73 | 51 72 | eqbrtrrd |  | 
						
							| 74 | 33 20 26 | lemuldivd |  | 
						
							| 75 | 73 74 | mpbid |  | 
						
							| 76 | 22 33 | subge0d |  | 
						
							| 77 | 75 76 | mpbird |  | 
						
							| 78 |  | log1 |  | 
						
							| 79 |  | nnge1 |  | 
						
							| 80 | 79 | ad2antrl |  | 
						
							| 81 |  | 1rp |  | 
						
							| 82 |  | logleb |  | 
						
							| 83 | 81 26 82 | sylancr |  | 
						
							| 84 | 80 83 | mpbid |  | 
						
							| 85 | 78 84 | eqbrtrrid |  | 
						
							| 86 | 34 35 77 85 | mulge0d |  |