Metamath Proof Explorer


Theorem prmgaplem4

Description: Lemma for prmgap . (Contributed by AV, 10-Aug-2020)

Ref Expression
Hypothesis prmgaplem4.a A = p | N < p p P
Assertion prmgaplem4 N P N < P x A y A x y

Proof

Step Hyp Ref Expression
1 prmgaplem4.a A = p | N < p p P
2 ssrab2 p | N < p p P
3 2 a1i N P N < P p | N < p p P
4 prmssnn
5 nnssre
6 4 5 sstri
7 3 6 sstrdi N P N < P p | N < p p P
8 fzfid N P N < P N P Fin
9 breq2 p = i N < p N < i
10 breq1 p = i p P i P
11 9 10 anbi12d p = i N < p p P N < i i P
12 11 elrab i p | N < p p P i N < i i P
13 nnz N N
14 prmz P P
15 13 14 anim12i N P N P
16 15 3adant3 N P N < P N P
17 prmz i i
18 17 adantr i N < i i P i
19 16 18 anim12i N P N < P i N < i i P N P i
20 df-3an N P i N P i
21 19 20 sylibr N P N < P i N < i i P N P i
22 nnre N N
23 22 adantr N P N
24 6 sseli i i
25 ltle N i N < i N i
26 23 24 25 syl2an N P i N < i N i
27 26 anim1d N P i N < i i P N i i P
28 27 ex N P i N < i i P N i i P
29 28 3adant3 N P N < P i N < i i P N i i P
30 29 imp32 N P N < P i N < i i P N i i P
31 elfz2 i N P N P i N i i P
32 21 30 31 sylanbrc N P N < P i N < i i P i N P
33 32 ex N P N < P i N < i i P i N P
34 12 33 syl5bi N P N < P i p | N < p p P i N P
35 34 ssrdv N P N < P p | N < p p P N P
36 8 35 ssfid N P N < P p | N < p p P Fin
37 breq2 p = P N < p N < P
38 breq1 p = P p P P P
39 37 38 anbi12d p = P N < p p P N < P P P
40 simp2 N P N < P P
41 prmnn P P
42 41 nnred P P
43 42 leidd P P P
44 43 anim1ci P N < P N < P P P
45 44 3adant1 N P N < P N < P P P
46 39 40 45 elrabd N P N < P P p | N < p p P
47 46 ne0d N P N < P p | N < p p P
48 sseq1 A = p | N < p p P A p | N < p p P
49 eleq1 A = p | N < p p P A Fin p | N < p p P Fin
50 neeq1 A = p | N < p p P A p | N < p p P
51 48 49 50 3anbi123d A = p | N < p p P A A Fin A p | N < p p P p | N < p p P Fin p | N < p p P
52 1 51 ax-mp A A Fin A p | N < p p P p | N < p p P Fin p | N < p p P
53 7 36 47 52 syl3anbrc N P N < P A A Fin A
54 fiminre A A Fin A x A y A x y
55 53 54 syl N P N < P x A y A x y