| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmgaplem4.a |
|
| 2 |
|
ssrab2 |
|
| 3 |
2
|
a1i |
|
| 4 |
|
prmssnn |
|
| 5 |
|
nnssre |
|
| 6 |
4 5
|
sstri |
|
| 7 |
3 6
|
sstrdi |
|
| 8 |
|
fzfid |
|
| 9 |
|
breq2 |
|
| 10 |
|
breq1 |
|
| 11 |
9 10
|
anbi12d |
|
| 12 |
11
|
elrab |
|
| 13 |
|
nnz |
|
| 14 |
|
prmz |
|
| 15 |
13 14
|
anim12i |
|
| 16 |
15
|
3adant3 |
|
| 17 |
|
prmz |
|
| 18 |
17
|
adantr |
|
| 19 |
16 18
|
anim12i |
|
| 20 |
|
df-3an |
|
| 21 |
19 20
|
sylibr |
|
| 22 |
|
nnre |
|
| 23 |
22
|
adantr |
|
| 24 |
6
|
sseli |
|
| 25 |
|
ltle |
|
| 26 |
23 24 25
|
syl2an |
|
| 27 |
26
|
anim1d |
|
| 28 |
27
|
ex |
|
| 29 |
28
|
3adant3 |
|
| 30 |
29
|
imp32 |
|
| 31 |
|
elfz2 |
|
| 32 |
21 30 31
|
sylanbrc |
|
| 33 |
32
|
ex |
|
| 34 |
12 33
|
biimtrid |
|
| 35 |
34
|
ssrdv |
|
| 36 |
8 35
|
ssfid |
|
| 37 |
|
breq2 |
|
| 38 |
|
breq1 |
|
| 39 |
37 38
|
anbi12d |
|
| 40 |
|
simp2 |
|
| 41 |
|
prmnn |
|
| 42 |
41
|
nnred |
|
| 43 |
42
|
leidd |
|
| 44 |
43
|
anim1ci |
|
| 45 |
44
|
3adant1 |
|
| 46 |
39 40 45
|
elrabd |
|
| 47 |
46
|
ne0d |
|
| 48 |
|
sseq1 |
|
| 49 |
|
eleq1 |
|
| 50 |
|
neeq1 |
|
| 51 |
48 49 50
|
3anbi123d |
|
| 52 |
1 51
|
ax-mp |
|
| 53 |
7 36 47 52
|
syl3anbrc |
|
| 54 |
|
fiminre |
|
| 55 |
53 54
|
syl |
|