Metamath Proof Explorer


Theorem prnc

Description: A principal ideal (an ideal generated by one element) in a commutative ring. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses prnc.1 G=1stR
prnc.2 H=2ndR
prnc.3 X=ranG
Assertion prnc RCRingOpsAXRIdlGenA=xX|yXx=yHA

Proof

Step Hyp Ref Expression
1 prnc.1 G=1stR
2 prnc.2 H=2ndR
3 prnc.3 X=ranG
4 crngorngo RCRingOpsRRingOps
5 ssrab2 xX|yXx=yHAX
6 5 a1i RRingOpsAXxX|yXx=yHAX
7 eqid GIdG=GIdG
8 1 3 7 rngo0cl RRingOpsGIdGX
9 8 adantr RRingOpsAXGIdGX
10 7 3 1 2 rngolz RRingOpsAXGIdGHA=GIdG
11 10 eqcomd RRingOpsAXGIdG=GIdGHA
12 oveq1 y=GIdGyHA=GIdGHA
13 12 rspceeqv GIdGXGIdG=GIdGHAyXGIdG=yHA
14 9 11 13 syl2anc RRingOpsAXyXGIdG=yHA
15 eqeq1 x=GIdGx=yHAGIdG=yHA
16 15 rexbidv x=GIdGyXx=yHAyXGIdG=yHA
17 16 elrab GIdGxX|yXx=yHAGIdGXyXGIdG=yHA
18 9 14 17 sylanbrc RRingOpsAXGIdGxX|yXx=yHA
19 eqeq1 x=ux=yHAu=yHA
20 19 rexbidv x=uyXx=yHAyXu=yHA
21 oveq1 y=ryHA=rHA
22 21 eqeq2d y=ru=yHAu=rHA
23 22 cbvrexvw yXu=yHArXu=rHA
24 20 23 bitrdi x=uyXx=yHArXu=rHA
25 24 elrab uxX|yXx=yHAuXrXu=rHA
26 eqeq1 x=vx=yHAv=yHA
27 26 rexbidv x=vyXx=yHAyXv=yHA
28 oveq1 y=syHA=sHA
29 28 eqeq2d y=sv=yHAv=sHA
30 29 cbvrexvw yXv=yHAsXv=sHA
31 27 30 bitrdi x=vyXx=yHAsXv=sHA
32 31 elrab vxX|yXx=yHAvXsXv=sHA
33 1 2 3 rngodir RRingOpsrXsXAXrGsHA=rHAGsHA
34 33 3exp2 RRingOpsrXsXAXrGsHA=rHAGsHA
35 34 imp42 RRingOpsrXsXAXrGsHA=rHAGsHA
36 1 3 rngogcl RRingOpsrXsXrGsX
37 36 3expib RRingOpsrXsXrGsX
38 37 imdistani RRingOpsrXsXRRingOpsrGsX
39 1 2 3 rngocl RRingOpsrGsXAXrGsHAX
40 39 3expa RRingOpsrGsXAXrGsHAX
41 eqid rGsHA=rGsHA
42 oveq1 y=rGsyHA=rGsHA
43 42 rspceeqv rGsXrGsHA=rGsHAyXrGsHA=yHA
44 41 43 mpan2 rGsXyXrGsHA=yHA
45 44 ad2antlr RRingOpsrGsXAXyXrGsHA=yHA
46 eqeq1 x=rGsHAx=yHArGsHA=yHA
47 46 rexbidv x=rGsHAyXx=yHAyXrGsHA=yHA
48 47 elrab rGsHAxX|yXx=yHArGsHAXyXrGsHA=yHA
49 40 45 48 sylanbrc RRingOpsrGsXAXrGsHAxX|yXx=yHA
50 38 49 sylan RRingOpsrXsXAXrGsHAxX|yXx=yHA
51 35 50 eqeltrrd RRingOpsrXsXAXrHAGsHAxX|yXx=yHA
52 51 an32s RRingOpsAXrXsXrHAGsHAxX|yXx=yHA
53 52 anassrs RRingOpsAXrXsXrHAGsHAxX|yXx=yHA
54 oveq2 v=sHArHAGv=rHAGsHA
55 54 eleq1d v=sHArHAGvxX|yXx=yHArHAGsHAxX|yXx=yHA
56 53 55 syl5ibrcom RRingOpsAXrXsXv=sHArHAGvxX|yXx=yHA
57 56 rexlimdva RRingOpsAXrXsXv=sHArHAGvxX|yXx=yHA
58 57 adantld RRingOpsAXrXvXsXv=sHArHAGvxX|yXx=yHA
59 32 58 biimtrid RRingOpsAXrXvxX|yXx=yHArHAGvxX|yXx=yHA
60 59 ralrimiv RRingOpsAXrXvxX|yXx=yHArHAGvxX|yXx=yHA
61 1 2 3 rngoass RRingOpswXrXAXwHrHA=wHrHA
62 61 3exp2 RRingOpswXrXAXwHrHA=wHrHA
63 62 imp42 RRingOpswXrXAXwHrHA=wHrHA
64 63 an32s RRingOpsAXwXrXwHrHA=wHrHA
65 1 2 3 rngocl RRingOpswXrXwHrX
66 65 3expib RRingOpswXrXwHrX
67 66 imdistani RRingOpswXrXRRingOpswHrX
68 1 2 3 rngocl RRingOpswHrXAXwHrHAX
69 68 3expa RRingOpswHrXAXwHrHAX
70 eqid wHrHA=wHrHA
71 oveq1 y=wHryHA=wHrHA
72 71 rspceeqv wHrXwHrHA=wHrHAyXwHrHA=yHA
73 70 72 mpan2 wHrXyXwHrHA=yHA
74 73 ad2antlr RRingOpswHrXAXyXwHrHA=yHA
75 eqeq1 x=wHrHAx=yHAwHrHA=yHA
76 75 rexbidv x=wHrHAyXx=yHAyXwHrHA=yHA
77 76 elrab wHrHAxX|yXx=yHAwHrHAXyXwHrHA=yHA
78 69 74 77 sylanbrc RRingOpswHrXAXwHrHAxX|yXx=yHA
79 67 78 sylan RRingOpswXrXAXwHrHAxX|yXx=yHA
80 79 an32s RRingOpsAXwXrXwHrHAxX|yXx=yHA
81 64 80 eqeltrrd RRingOpsAXwXrXwHrHAxX|yXx=yHA
82 81 anass1rs RRingOpsAXrXwXwHrHAxX|yXx=yHA
83 82 ralrimiva RRingOpsAXrXwXwHrHAxX|yXx=yHA
84 60 83 jca RRingOpsAXrXvxX|yXx=yHArHAGvxX|yXx=yHAwXwHrHAxX|yXx=yHA
85 oveq1 u=rHAuGv=rHAGv
86 85 eleq1d u=rHAuGvxX|yXx=yHArHAGvxX|yXx=yHA
87 86 ralbidv u=rHAvxX|yXx=yHAuGvxX|yXx=yHAvxX|yXx=yHArHAGvxX|yXx=yHA
88 oveq2 u=rHAwHu=wHrHA
89 88 eleq1d u=rHAwHuxX|yXx=yHAwHrHAxX|yXx=yHA
90 89 ralbidv u=rHAwXwHuxX|yXx=yHAwXwHrHAxX|yXx=yHA
91 87 90 anbi12d u=rHAvxX|yXx=yHAuGvxX|yXx=yHAwXwHuxX|yXx=yHAvxX|yXx=yHArHAGvxX|yXx=yHAwXwHrHAxX|yXx=yHA
92 84 91 syl5ibrcom RRingOpsAXrXu=rHAvxX|yXx=yHAuGvxX|yXx=yHAwXwHuxX|yXx=yHA
93 92 rexlimdva RRingOpsAXrXu=rHAvxX|yXx=yHAuGvxX|yXx=yHAwXwHuxX|yXx=yHA
94 93 adantld RRingOpsAXuXrXu=rHAvxX|yXx=yHAuGvxX|yXx=yHAwXwHuxX|yXx=yHA
95 25 94 biimtrid RRingOpsAXuxX|yXx=yHAvxX|yXx=yHAuGvxX|yXx=yHAwXwHuxX|yXx=yHA
96 95 ralrimiv RRingOpsAXuxX|yXx=yHAvxX|yXx=yHAuGvxX|yXx=yHAwXwHuxX|yXx=yHA
97 6 18 96 3jca RRingOpsAXxX|yXx=yHAXGIdGxX|yXx=yHAuxX|yXx=yHAvxX|yXx=yHAuGvxX|yXx=yHAwXwHuxX|yXx=yHA
98 4 97 sylan RCRingOpsAXxX|yXx=yHAXGIdGxX|yXx=yHAuxX|yXx=yHAvxX|yXx=yHAuGvxX|yXx=yHAwXwHuxX|yXx=yHA
99 1 2 3 7 isidlc RCRingOpsxX|yXx=yHAIdlRxX|yXx=yHAXGIdGxX|yXx=yHAuxX|yXx=yHAvxX|yXx=yHAuGvxX|yXx=yHAwXwHuxX|yXx=yHA
100 99 adantr RCRingOpsAXxX|yXx=yHAIdlRxX|yXx=yHAXGIdGxX|yXx=yHAuxX|yXx=yHAvxX|yXx=yHAuGvxX|yXx=yHAwXwHuxX|yXx=yHA
101 98 100 mpbird RCRingOpsAXxX|yXx=yHAIdlR
102 simpr RCRingOpsAXAX
103 1 rneqi ranG=ran1stR
104 3 103 eqtri X=ran1stR
105 eqid GIdH=GIdH
106 104 2 105 rngo1cl RRingOpsGIdHX
107 106 adantr RRingOpsAXGIdHX
108 2 104 105 rngolidm RRingOpsAXGIdHHA=A
109 108 eqcomd RRingOpsAXA=GIdHHA
110 oveq1 y=GIdHyHA=GIdHHA
111 110 rspceeqv GIdHXA=GIdHHAyXA=yHA
112 107 109 111 syl2anc RRingOpsAXyXA=yHA
113 4 112 sylan RCRingOpsAXyXA=yHA
114 eqeq1 x=Ax=yHAA=yHA
115 114 rexbidv x=AyXx=yHAyXA=yHA
116 115 elrab AxX|yXx=yHAAXyXA=yHA
117 102 113 116 sylanbrc RCRingOpsAXAxX|yXx=yHA
118 117 snssd RCRingOpsAXAxX|yXx=yHA
119 snssg AXAjAj
120 119 biimpar AXAjAj
121 1 2 3 idllmulcl RRingOpsjIdlRAjyXyHAj
122 121 anassrs RRingOpsjIdlRAjyXyHAj
123 eleq1 x=yHAxjyHAj
124 122 123 syl5ibrcom RRingOpsjIdlRAjyXx=yHAxj
125 124 rexlimdva RRingOpsjIdlRAjyXx=yHAxj
126 125 adantr RRingOpsjIdlRAjxXyXx=yHAxj
127 126 ralrimiva RRingOpsjIdlRAjxXyXx=yHAxj
128 rabss xX|yXx=yHAjxXyXx=yHAxj
129 127 128 sylibr RRingOpsjIdlRAjxX|yXx=yHAj
130 129 ex RRingOpsjIdlRAjxX|yXx=yHAj
131 120 130 syl5 RRingOpsjIdlRAXAjxX|yXx=yHAj
132 131 expdimp RRingOpsjIdlRAXAjxX|yXx=yHAj
133 132 an32s RRingOpsAXjIdlRAjxX|yXx=yHAj
134 133 ralrimiva RRingOpsAXjIdlRAjxX|yXx=yHAj
135 4 134 sylan RCRingOpsAXjIdlRAjxX|yXx=yHAj
136 101 118 135 3jca RCRingOpsAXxX|yXx=yHAIdlRAxX|yXx=yHAjIdlRAjxX|yXx=yHAj
137 snssi AXAX
138 1 3 igenval2 RRingOpsAXRIdlGenA=xX|yXx=yHAxX|yXx=yHAIdlRAxX|yXx=yHAjIdlRAjxX|yXx=yHAj
139 4 137 138 syl2an RCRingOpsAXRIdlGenA=xX|yXx=yHAxX|yXx=yHAIdlRAxX|yXx=yHAjIdlRAjxX|yXx=yHAj
140 136 139 mpbird RCRingOpsAXRIdlGenA=xX|yXx=yHA