Metamath Proof Explorer


Theorem psrmulcllem

Description: Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrmulcl.s S=ImPwSerR
psrmulcl.b B=BaseS
psrmulcl.t ·˙=S
psrmulcl.r φRRing
psrmulcl.x φXB
psrmulcl.y φYB
psrmulcl.d D=f0I|f-1Fin
Assertion psrmulcllem φX·˙YB

Proof

Step Hyp Ref Expression
1 psrmulcl.s S=ImPwSerR
2 psrmulcl.b B=BaseS
3 psrmulcl.t ·˙=S
4 psrmulcl.r φRRing
5 psrmulcl.x φXB
6 psrmulcl.y φYB
7 psrmulcl.d D=f0I|f-1Fin
8 eqid BaseR=BaseR
9 eqid 0R=0R
10 4 adantr φkDRRing
11 10 ringcmnd φkDRCMnd
12 7 psrbaglefi kDyD|yfkFin
13 12 adantl φkDyD|yfkFin
14 eqid R=R
15 4 ad2antrr φkDxyD|yfkRRing
16 1 8 7 2 5 psrelbas φX:DBaseR
17 16 ad2antrr φkDxyD|yfkX:DBaseR
18 simpr φkDxyD|yfkxyD|yfk
19 breq1 y=xyfkxfk
20 19 elrab xyD|yfkxDxfk
21 18 20 sylib φkDxyD|yfkxDxfk
22 21 simpld φkDxyD|yfkxD
23 17 22 ffvelcdmd φkDxyD|yfkXxBaseR
24 1 8 7 2 6 psrelbas φY:DBaseR
25 24 ad2antrr φkDxyD|yfkY:DBaseR
26 simplr φkDxyD|yfkkD
27 7 psrbagf xDx:I0
28 22 27 syl φkDxyD|yfkx:I0
29 21 simprd φkDxyD|yfkxfk
30 7 psrbagcon kDx:I0xfkkfxDkfxfk
31 26 28 29 30 syl3anc φkDxyD|yfkkfxDkfxfk
32 31 simpld φkDxyD|yfkkfxD
33 25 32 ffvelcdmd φkDxyD|yfkYkfxBaseR
34 8 14 15 23 33 ringcld φkDxyD|yfkXxRYkfxBaseR
35 34 fmpttd φkDxyD|yfkXxRYkfx:yD|yfkBaseR
36 fvexd φkD0RV
37 35 13 36 fdmfifsupp φkDfinSupp0RxyD|yfkXxRYkfx
38 8 9 11 13 35 37 gsumcl φkDRxyD|yfkXxRYkfxBaseR
39 38 fmpttd φkDRxyD|yfkXxRYkfx:DBaseR
40 fvex BaseRV
41 ovex 0IV
42 7 41 rabex2 DV
43 40 42 elmap kDRxyD|yfkXxRYkfxBaseRDkDRxyD|yfkXxRYkfx:DBaseR
44 39 43 sylibr φkDRxyD|yfkXxRYkfxBaseRD
45 1 2 14 3 7 5 6 psrmulfval φX·˙Y=kDRxyD|yfkXxRYkfx
46 reldmpsr ReldommPwSer
47 46 1 2 elbasov XBIVRV
48 5 47 syl φIVRV
49 48 simpld φIV
50 1 8 7 2 49 psrbas φB=BaseRD
51 44 45 50 3eltr4d φX·˙YB