Metamath Proof Explorer


Theorem ptbasin

Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypothesis ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
Assertion ptbasin AVF:ATopXBYBXYB

Proof

Step Hyp Ref Expression
1 ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
2 1 elpt XBaaFnAyAayFycFinyAcay=FyX=yAay
3 1 elpt YBbbFnAyAbyFydFinyAdby=FyY=yAby
4 2 3 anbi12i XBYBaaFnAyAayFycFinyAcay=FyX=yAaybbFnAyAbyFydFinyAdby=FyY=yAby
5 exdistrv abaFnAyAayFycFinyAcay=FyX=yAaybFnAyAbyFydFinyAdby=FyY=yAbyaaFnAyAayFycFinyAcay=FyX=yAaybbFnAyAbyFydFinyAdby=FyY=yAby
6 4 5 bitr4i XBYBabaFnAyAayFycFinyAcay=FyX=yAaybFnAyAbyFydFinyAdby=FyY=yAby
7 an4 aFnAyAayFycFinyAcay=FyX=yAaybFnAyAbyFydFinyAdby=FyY=yAbyaFnAyAayFycFinyAcay=FybFnAyAbyFydFinyAdby=FyX=yAayY=yAby
8 an6 aFnAyAayFycFinyAcay=FybFnAyAbyFydFinyAdby=FyaFnAbFnAyAayFyyAbyFycFinyAcay=FydFinyAdby=Fy
9 df-3an aFnAbFnAyAayFyyAbyFycFinyAcay=FydFinyAdby=FyaFnAbFnAyAayFyyAbyFycFinyAcay=FydFinyAdby=Fy
10 8 9 bitri aFnAyAayFycFinyAcay=FybFnAyAbyFydFinyAdby=FyaFnAbFnAyAayFyyAbyFycFinyAcay=FydFinyAdby=Fy
11 reeanv cFindFinyAcay=FyyAdby=FycFinyAcay=FydFinyAdby=Fy
12 fveq2 y=kay=ak
13 fveq2 y=kby=bk
14 12 13 ineq12d y=kayby=akbk
15 14 cbvixpv yAayby=kAakbk
16 simpl1l AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FyAV
17 unfi cFindFincdFin
18 17 ad2antrl AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FycdFin
19 simpl1r AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FyF:ATop
20 19 ffvelcdmda AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FykAFkTop
21 simpl3l AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FyyAayFy
22 fveq2 y=kFy=Fk
23 12 22 eleq12d y=kayFyakFk
24 23 rspccva yAayFykAakFk
25 21 24 sylan AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FykAakFk
26 simpl3r AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FyyAbyFy
27 13 22 eleq12d y=kbyFybkFk
28 27 rspccva yAbyFykAbkFk
29 26 28 sylan AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FykAbkFk
30 inopn FkTopakFkbkFkakbkFk
31 20 25 29 30 syl3anc AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FykAakbkFk
32 simprrl AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FyyAcay=Fy
33 ssun1 ccd
34 sscon ccdAcdAc
35 33 34 ax-mp AcdAc
36 35 sseli kAcdkAc
37 22 unieqd y=kFy=Fk
38 12 37 eqeq12d y=kay=Fyak=Fk
39 38 rspccva yAcay=FykAcak=Fk
40 32 36 39 syl2an AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FykAcdak=Fk
41 simprrr AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FyyAdby=Fy
42 ssun2 dcd
43 sscon dcdAcdAd
44 42 43 ax-mp AcdAd
45 44 sseli kAcdkAd
46 13 37 eqeq12d y=kby=Fybk=Fk
47 46 rspccva yAdby=FykAdbk=Fk
48 41 45 47 syl2an AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FykAcdbk=Fk
49 40 48 ineq12d AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FykAcdakbk=FkFk
50 inidm FkFk=Fk
51 49 50 eqtrdi AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FykAcdakbk=Fk
52 1 16 18 31 51 elptr2 AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FykAakbkB
53 15 52 eqeltrid AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FyyAaybyB
54 53 expr AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FyyAaybyB
55 54 rexlimdvva AVF:ATopaFnAbFnAyAayFyyAbyFycFindFinyAcay=FyyAdby=FyyAaybyB
56 11 55 biimtrrid AVF:ATopaFnAbFnAyAayFyyAbyFycFinyAcay=FydFinyAdby=FyyAaybyB
57 56 3expb AVF:ATopaFnAbFnAyAayFyyAbyFycFinyAcay=FydFinyAdby=FyyAaybyB
58 57 impr AVF:ATopaFnAbFnAyAayFyyAbyFycFinyAcay=FydFinyAdby=FyyAaybyB
59 10 58 sylan2b AVF:ATopaFnAyAayFycFinyAcay=FybFnAyAbyFydFinyAdby=FyyAaybyB
60 ineq12 X=yAayY=yAbyXY=yAayyAby
61 ixpin yAayby=yAayyAby
62 60 61 eqtr4di X=yAayY=yAbyXY=yAayby
63 62 eleq1d X=yAayY=yAbyXYByAaybyB
64 59 63 syl5ibrcom AVF:ATopaFnAyAayFycFinyAcay=FybFnAyAbyFydFinyAdby=FyX=yAayY=yAbyXYB
65 64 expimpd AVF:ATopaFnAyAayFycFinyAcay=FybFnAyAbyFydFinyAdby=FyX=yAayY=yAbyXYB
66 7 65 biimtrid AVF:ATopaFnAyAayFycFinyAcay=FyX=yAaybFnAyAbyFydFinyAdby=FyY=yAbyXYB
67 66 exlimdvv AVF:ATopabaFnAyAayFycFinyAcay=FyX=yAaybFnAyAbyFydFinyAdby=FyY=yAbyXYB
68 6 67 biimtrid AVF:ATopXBYBXYB
69 68 imp AVF:ATopXBYBXYB