Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 3-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ptbas.1 | |
|
Assertion | ptbasin | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptbas.1 | |
|
2 | 1 | elpt | |
3 | 1 | elpt | |
4 | 2 3 | anbi12i | |
5 | exdistrv | |
|
6 | 4 5 | bitr4i | |
7 | an4 | |
|
8 | an6 | |
|
9 | df-3an | |
|
10 | 8 9 | bitri | |
11 | reeanv | |
|
12 | fveq2 | |
|
13 | fveq2 | |
|
14 | 12 13 | ineq12d | |
15 | 14 | cbvixpv | |
16 | simpl1l | |
|
17 | unfi | |
|
18 | 17 | ad2antrl | |
19 | simpl1r | |
|
20 | 19 | ffvelcdmda | |
21 | simpl3l | |
|
22 | fveq2 | |
|
23 | 12 22 | eleq12d | |
24 | 23 | rspccva | |
25 | 21 24 | sylan | |
26 | simpl3r | |
|
27 | 13 22 | eleq12d | |
28 | 27 | rspccva | |
29 | 26 28 | sylan | |
30 | inopn | |
|
31 | 20 25 29 30 | syl3anc | |
32 | simprrl | |
|
33 | ssun1 | |
|
34 | sscon | |
|
35 | 33 34 | ax-mp | |
36 | 35 | sseli | |
37 | 22 | unieqd | |
38 | 12 37 | eqeq12d | |
39 | 38 | rspccva | |
40 | 32 36 39 | syl2an | |
41 | simprrr | |
|
42 | ssun2 | |
|
43 | sscon | |
|
44 | 42 43 | ax-mp | |
45 | 44 | sseli | |
46 | 13 37 | eqeq12d | |
47 | 46 | rspccva | |
48 | 41 45 47 | syl2an | |
49 | 40 48 | ineq12d | |
50 | inidm | |
|
51 | 49 50 | eqtrdi | |
52 | 1 16 18 31 51 | elptr2 | |
53 | 15 52 | eqeltrid | |
54 | 53 | expr | |
55 | 54 | rexlimdvva | |
56 | 11 55 | biimtrrid | |
57 | 56 | 3expb | |
58 | 57 | impr | |
59 | 10 58 | sylan2b | |
60 | ineq12 | |
|
61 | ixpin | |
|
62 | 60 61 | eqtr4di | |
63 | 62 | eleq1d | |
64 | 59 63 | syl5ibrcom | |
65 | 64 | expimpd | |
66 | 7 65 | biimtrid | |
67 | 66 | exlimdvv | |
68 | 6 67 | biimtrid | |
69 | 68 | imp | |