Metamath Proof Explorer


Theorem qredeu

Description: Every rational number has a unique reduced form. (Contributed by Jeff Hankins, 29-Sep-2013)

Ref Expression
Assertion qredeu A∃!x×1stxgcd2ndx=1A=1stx2ndx

Proof

Step Hyp Ref Expression
1 nnz nn
2 gcddvds znzgcdnzzgcdnn
3 2 simpld znzgcdnz
4 1 3 sylan2 znzgcdnz
5 gcdcl znzgcdn0
6 1 5 sylan2 znzgcdn0
7 6 nn0zd znzgcdn
8 simpl znz
9 1 adantl znn
10 nnne0 nn0
11 10 neneqd n¬n=0
12 11 intnand n¬z=0n=0
13 12 adantl zn¬z=0n=0
14 gcdn0cl zn¬z=0n=0zgcdn
15 8 9 13 14 syl21anc znzgcdn
16 nnne0 zgcdnzgcdn0
17 15 16 syl znzgcdn0
18 dvdsval2 zgcdnzgcdn0zzgcdnzzzgcdn
19 7 17 8 18 syl3anc znzgcdnzzzgcdn
20 4 19 mpbid znzzgcdn
21 20 3adant3 znA=znzzgcdn
22 2 simprd znzgcdnn
23 1 22 sylan2 znzgcdnn
24 dvdsval2 zgcdnzgcdn0nzgcdnnnzgcdn
25 7 17 9 24 syl3anc znzgcdnnnzgcdn
26 23 25 mpbid znnzgcdn
27 nnre nn
28 27 adantl znn
29 6 nn0red znzgcdn
30 nngt0 n0<n
31 30 adantl zn0<n
32 nngt0 zgcdn0<zgcdn
33 15 32 syl zn0<zgcdn
34 28 29 31 33 divgt0d zn0<nzgcdn
35 26 34 jca znnzgcdn0<nzgcdn
36 35 3adant3 znA=znnzgcdn0<nzgcdn
37 elnnz nzgcdnnzgcdn0<nzgcdn
38 36 37 sylibr znA=znnzgcdn
39 21 38 opelxpd znA=znzzgcdnnzgcdn×
40 20 26 gcdcld znzzgcdngcdnzgcdn0
41 40 nn0cnd znzzgcdngcdnzgcdn
42 1cnd zn1
43 6 nn0cnd znzgcdn
44 43 mulridd znzgcdn1=zgcdn
45 zcn zz
46 45 adantr znz
47 46 43 17 divcan2d znzgcdnzzgcdn=z
48 nncn nn
49 48 adantl znn
50 49 43 17 divcan2d znzgcdnnzgcdn=n
51 47 50 oveq12d znzgcdnzzgcdngcdzgcdnnzgcdn=zgcdn
52 mulgcd zgcdn0zzgcdnnzgcdnzgcdnzzgcdngcdzgcdnnzgcdn=zgcdnzzgcdngcdnzgcdn
53 6 20 26 52 syl3anc znzgcdnzzgcdngcdzgcdnnzgcdn=zgcdnzzgcdngcdnzgcdn
54 44 51 53 3eqtr2rd znzgcdnzzgcdngcdnzgcdn=zgcdn1
55 41 42 43 17 54 mulcanad znzzgcdngcdnzgcdn=1
56 55 3adant3 znA=znzzgcdngcdnzgcdn=1
57 10 adantl znn0
58 46 49 43 57 17 divcan7d znzzgcdnnzgcdn=zn
59 58 eqeq2d znA=zzgcdnnzgcdnA=zn
60 59 biimp3ar znA=znA=zzgcdnnzgcdn
61 ovex zzgcdnV
62 ovex nzgcdnV
63 61 62 op1std x=zzgcdnnzgcdn1stx=zzgcdn
64 61 62 op2ndd x=zzgcdnnzgcdn2ndx=nzgcdn
65 63 64 oveq12d x=zzgcdnnzgcdn1stxgcd2ndx=zzgcdngcdnzgcdn
66 65 eqeq1d x=zzgcdnnzgcdn1stxgcd2ndx=1zzgcdngcdnzgcdn=1
67 63 64 oveq12d x=zzgcdnnzgcdn1stx2ndx=zzgcdnnzgcdn
68 67 eqeq2d x=zzgcdnnzgcdnA=1stx2ndxA=zzgcdnnzgcdn
69 66 68 anbi12d x=zzgcdnnzgcdn1stxgcd2ndx=1A=1stx2ndxzzgcdngcdnzgcdn=1A=zzgcdnnzgcdn
70 69 rspcev zzgcdnnzgcdn×zzgcdngcdnzgcdn=1A=zzgcdnnzgcdnx×1stxgcd2ndx=1A=1stx2ndx
71 39 56 60 70 syl12anc znA=znx×1stxgcd2ndx=1A=1stx2ndx
72 elxp6 x×x=1stx2ndx1stx2ndx
73 elxp6 y×y=1sty2ndy1sty2ndy
74 simprl x=1stx2ndx1stx2ndx1stx
75 74 ad2antrr x=1stx2ndx1stx2ndxy=1sty2ndy1sty2ndy1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndy1stx
76 simprr x=1stx2ndx1stx2ndx2ndx
77 76 ad2antrr x=1stx2ndx1stx2ndxy=1sty2ndy1sty2ndy1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndy2ndx
78 simprll x=1stx2ndx1stx2ndxy=1sty2ndy1sty2ndy1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndy1stxgcd2ndx=1
79 simprl y=1sty2ndy1sty2ndy1sty
80 79 ad2antlr x=1stx2ndx1stx2ndxy=1sty2ndy1sty2ndy1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndy1sty
81 simprr y=1sty2ndy1sty2ndy2ndy
82 81 ad2antlr x=1stx2ndx1stx2ndxy=1sty2ndy1sty2ndy1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndy2ndy
83 simprrl x=1stx2ndx1stx2ndxy=1sty2ndy1sty2ndy1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndy1stygcd2ndy=1
84 simprlr x=1stx2ndx1stx2ndxy=1sty2ndy1sty2ndy1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndyA=1stx2ndx
85 simprrr x=1stx2ndx1stx2ndxy=1sty2ndy1sty2ndy1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndyA=1sty2ndy
86 84 85 eqtr3d x=1stx2ndx1stx2ndxy=1sty2ndy1sty2ndy1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndy1stx2ndx=1sty2ndy
87 qredeq 1stx2ndx1stxgcd2ndx=11sty2ndy1stygcd2ndy=11stx2ndx=1sty2ndy1stx=1sty2ndx=2ndy
88 75 77 78 80 82 83 86 87 syl331anc x=1stx2ndx1stx2ndxy=1sty2ndy1sty2ndy1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndy1stx=1sty2ndx=2ndy
89 fvex 1stxV
90 fvex 2ndxV
91 89 90 opth 1stx2ndx=1sty2ndy1stx=1sty2ndx=2ndy
92 88 91 sylibr x=1stx2ndx1stx2ndxy=1sty2ndy1sty2ndy1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndy1stx2ndx=1sty2ndy
93 simplll x=1stx2ndx1stx2ndxy=1sty2ndy1sty2ndy1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndyx=1stx2ndx
94 simplrl x=1stx2ndx1stx2ndxy=1sty2ndy1sty2ndy1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndyy=1sty2ndy
95 92 93 94 3eqtr4d x=1stx2ndx1stx2ndxy=1sty2ndy1sty2ndy1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndyx=y
96 95 ex x=1stx2ndx1stx2ndxy=1sty2ndy1sty2ndy1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndyx=y
97 72 73 96 syl2anb x×y×1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndyx=y
98 97 rgen2 x×y×1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndyx=y
99 71 98 jctir znA=znx×1stxgcd2ndx=1A=1stx2ndxx×y×1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndyx=y
100 99 3expia znA=znx×1stxgcd2ndx=1A=1stx2ndxx×y×1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndyx=y
101 100 rexlimivv znA=znx×1stxgcd2ndx=1A=1stx2ndxx×y×1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndyx=y
102 elq AznA=zn
103 fveq2 x=y1stx=1sty
104 fveq2 x=y2ndx=2ndy
105 103 104 oveq12d x=y1stxgcd2ndx=1stygcd2ndy
106 105 eqeq1d x=y1stxgcd2ndx=11stygcd2ndy=1
107 103 104 oveq12d x=y1stx2ndx=1sty2ndy
108 107 eqeq2d x=yA=1stx2ndxA=1sty2ndy
109 106 108 anbi12d x=y1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndy
110 109 reu4 ∃!x×1stxgcd2ndx=1A=1stx2ndxx×1stxgcd2ndx=1A=1stx2ndxx×y×1stxgcd2ndx=1A=1stx2ndx1stygcd2ndy=1A=1sty2ndyx=y
111 101 102 110 3imtr4i A∃!x×1stxgcd2ndx=1A=1stx2ndx