Metamath Proof Explorer


Theorem rmodislmodOLD

Description: Obsolete version of rmodislmod as of 18-Oct-2024. The right module R induces a left module L by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod of a left module, see also islmod . (Contributed by AV, 3-Dec-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rmodislmod.v V=BaseR
rmodislmod.a +˙=+R
rmodislmod.s ·˙=R
rmodislmod.f F=ScalarR
rmodislmod.k K=BaseF
rmodislmod.p ˙=+F
rmodislmod.t ×˙=F
rmodislmod.u 1˙=1F
rmodislmod.r RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=w
rmodislmod.m ˙=sK,vVv·˙s
rmodislmod.l L=RsSetndx˙
Assertion rmodislmodOLD FCRingLLMod

Proof

Step Hyp Ref Expression
1 rmodislmod.v V=BaseR
2 rmodislmod.a +˙=+R
3 rmodislmod.s ·˙=R
4 rmodislmod.f F=ScalarR
5 rmodislmod.k K=BaseF
6 rmodislmod.p ˙=+F
7 rmodislmod.t ×˙=F
8 rmodislmod.u 1˙=1F
9 rmodislmod.r RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=w
10 rmodislmod.m ˙=sK,vVv·˙s
11 rmodislmod.l L=RsSetndx˙
12 baseid Base=SlotBasendx
13 df-base Base=Slot1
14 1nn 1
15 13 14 ndxarg Basendx=1
16 1re 1
17 1lt6 1<6
18 16 17 ltneii 16
19 vscandx ndx=6
20 18 19 neeqtrri 1ndx
21 15 20 eqnetri Basendxndx
22 12 21 setsnid BaseR=BaseRsSetndx˙
23 1 22 eqtri V=BaseRsSetndx˙
24 11 eqcomi RsSetndx˙=L
25 24 fveq2i BaseRsSetndx˙=BaseL
26 23 25 eqtri V=BaseL
27 26 a1i FCRingV=BaseL
28 plusgid +𝑔=Slot+ndx
29 plusgndx +ndx=2
30 2re 2
31 2lt6 2<6
32 30 31 ltneii 26
33 32 19 neeqtrri 2ndx
34 29 33 eqnetri +ndxndx
35 28 34 setsnid +R=+RsSetndx˙
36 11 fveq2i +L=+RsSetndx˙
37 35 2 36 3eqtr4i +˙=+L
38 37 a1i FCRing+˙=+L
39 scaid Scalar=SlotScalarndx
40 scandx Scalarndx=5
41 5re 5
42 5lt6 5<6
43 41 42 ltneii 56
44 43 19 neeqtrri 5ndx
45 40 44 eqnetri Scalarndxndx
46 39 45 setsnid ScalarR=ScalarRsSetndx˙
47 11 fveq2i ScalarL=ScalarRsSetndx˙
48 46 4 47 3eqtr4i F=ScalarL
49 48 a1i FCRingF=ScalarL
50 9 simp1i RGrp
51 5 fvexi KV
52 1 fvexi VV
53 10 mpoexg KVVV˙V
54 51 52 53 mp2an ˙V
55 vscaid 𝑠=Slotndx
56 55 setsid RGrp˙V˙=RsSetndx˙
57 50 54 56 mp2an ˙=RsSetndx˙
58 24 fveq2i RsSetndx˙=L
59 57 58 eqtri ˙=L
60 59 a1i FCRing˙=L
61 5 a1i FCRingK=BaseF
62 6 a1i FCRing˙=+F
63 7 a1i FCRing×˙=F
64 8 a1i FCRing1˙=1F
65 crngring FCRingFRing
66 1 eqcomi BaseR=V
67 66 26 eqtri BaseR=BaseL
68 35 36 eqtr4i +R=+L
69 67 68 grpprop RGrpLGrp
70 50 69 mpbi LGrp
71 70 a1i FCRingLGrp
72 10 a1i FCRingaKbV˙=sK,vVv·˙s
73 oveq12 v=bs=av·˙s=b·˙a
74 73 ancoms s=av=bv·˙s=b·˙a
75 74 adantl FCRingaKbVs=av=bv·˙s=b·˙a
76 simp2 FCRingaKbVaK
77 simp3 FCRingaKbVbV
78 ovexd FCRingaKbVb·˙aV
79 72 75 76 77 78 ovmpod FCRingaKbVa˙b=b·˙a
80 simpl1 w·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=ww·˙rV
81 80 2ralimi xVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wxVwVw·˙rV
82 81 2ralimi qKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wqKrKxVwVw·˙rV
83 ringgrp FRingFGrp
84 5 grpbn0 FGrpK
85 83 84 syl FRingK
86 85 3ad2ant2 RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wK
87 9 86 ax-mp K
88 rspn0 KqKrKxVwVw·˙rVrKxVwVw·˙rV
89 87 88 ax-mp qKrKxVwVw·˙rVrKxVwVw·˙rV
90 ralcom rKxVwVw·˙rVxVrKwVw·˙rV
91 1 grpbn0 RGrpV
92 91 3ad2ant1 RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wV
93 9 92 ax-mp V
94 rspn0 VxVrKwVw·˙rVrKwVw·˙rV
95 93 94 ax-mp xVrKwVw·˙rVrKwVw·˙rV
96 oveq2 r=aw·˙r=w·˙a
97 96 eleq1d r=aw·˙rVw·˙aV
98 oveq1 w=bw·˙a=b·˙a
99 98 eleq1d w=bw·˙aVb·˙aV
100 97 99 rspc2v aKbVrKwVw·˙rVb·˙aV
101 100 3adant1 FCRingaKbVrKwVw·˙rVb·˙aV
102 95 101 syl5com xVrKwVw·˙rVFCRingaKbVb·˙aV
103 90 102 sylbi rKxVwVw·˙rVFCRingaKbVb·˙aV
104 82 89 103 3syl qKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wFCRingaKbVb·˙aV
105 104 3ad2ant3 RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wFCRingaKbVb·˙aV
106 9 105 ax-mp FCRingaKbVb·˙aV
107 79 106 eqeltrd FCRingaKbVa˙bV
108 10 a1i aKbVcV˙=sK,vVv·˙s
109 oveq12 v=b+˙cs=av·˙s=b+˙c·˙a
110 109 ancoms s=av=b+˙cv·˙s=b+˙c·˙a
111 110 adantl aKbVcVs=av=b+˙cv·˙s=b+˙c·˙a
112 simp1 aKbVcVaK
113 1 2 grpcl RGrpbVcVb+˙cV
114 50 113 mp3an1 bVcVb+˙cV
115 114 3adant1 aKbVcVb+˙cV
116 ovexd aKbVcVb+˙c·˙aV
117 108 111 112 115 116 ovmpod aKbVcVa˙b+˙c=b+˙c·˙a
118 simpl2 w·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=ww+˙x·˙r=w·˙r+˙x·˙r
119 118 2ralimi xVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wxVwVw+˙x·˙r=w·˙r+˙x·˙r
120 119 2ralimi qKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wqKrKxVwVw+˙x·˙r=w·˙r+˙x·˙r
121 rspn0 KqKrKxVwVw+˙x·˙r=w·˙r+˙x·˙rrKxVwVw+˙x·˙r=w·˙r+˙x·˙r
122 87 121 ax-mp qKrKxVwVw+˙x·˙r=w·˙r+˙x·˙rrKxVwVw+˙x·˙r=w·˙r+˙x·˙r
123 oveq2 r=aw+˙x·˙r=w+˙x·˙a
124 oveq2 r=ax·˙r=x·˙a
125 96 124 oveq12d r=aw·˙r+˙x·˙r=w·˙a+˙x·˙a
126 123 125 eqeq12d r=aw+˙x·˙r=w·˙r+˙x·˙rw+˙x·˙a=w·˙a+˙x·˙a
127 oveq2 x=cw+˙x=w+˙c
128 127 oveq1d x=cw+˙x·˙a=w+˙c·˙a
129 oveq1 x=cx·˙a=c·˙a
130 129 oveq2d x=cw·˙a+˙x·˙a=w·˙a+˙c·˙a
131 128 130 eqeq12d x=cw+˙x·˙a=w·˙a+˙x·˙aw+˙c·˙a=w·˙a+˙c·˙a
132 oveq1 w=bw+˙c=b+˙c
133 132 oveq1d w=bw+˙c·˙a=b+˙c·˙a
134 98 oveq1d w=bw·˙a+˙c·˙a=b·˙a+˙c·˙a
135 133 134 eqeq12d w=bw+˙c·˙a=w·˙a+˙c·˙ab+˙c·˙a=b·˙a+˙c·˙a
136 126 131 135 rspc3v aKcVbVrKxVwVw+˙x·˙r=w·˙r+˙x·˙rb+˙c·˙a=b·˙a+˙c·˙a
137 136 3com23 aKbVcVrKxVwVw+˙x·˙r=w·˙r+˙x·˙rb+˙c·˙a=b·˙a+˙c·˙a
138 122 137 syl5com qKrKxVwVw+˙x·˙r=w·˙r+˙x·˙raKbVcVb+˙c·˙a=b·˙a+˙c·˙a
139 120 138 syl qKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=waKbVcVb+˙c·˙a=b·˙a+˙c·˙a
140 139 3ad2ant3 RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=waKbVcVb+˙c·˙a=b·˙a+˙c·˙a
141 9 140 ax-mp aKbVcVb+˙c·˙a=b·˙a+˙c·˙a
142 117 141 eqtrd aKbVcVa˙b+˙c=b·˙a+˙c·˙a
143 142 adantl FCRingaKbVcVa˙b+˙c=b·˙a+˙c·˙a
144 74 adantl aKbVcVs=av=bv·˙s=b·˙a
145 simp2 aKbVcVbV
146 ovexd aKbVcVb·˙aV
147 108 144 112 145 146 ovmpod aKbVcVa˙b=b·˙a
148 oveq12 v=cs=av·˙s=c·˙a
149 148 ancoms s=av=cv·˙s=c·˙a
150 149 adantl aKbVcVs=av=cv·˙s=c·˙a
151 simp3 aKbVcVcV
152 ovexd aKbVcVc·˙aV
153 108 150 112 151 152 ovmpod aKbVcVa˙c=c·˙a
154 147 153 oveq12d aKbVcVa˙b+˙a˙c=b·˙a+˙c·˙a
155 154 adantl FCRingaKbVcVa˙b+˙a˙c=b·˙a+˙c·˙a
156 143 155 eqtr4d FCRingaKbVcVa˙b+˙c=a˙b+˙a˙c
157 simpl3 w·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=ww·˙q˙r=w·˙q+˙w·˙r
158 157 2ralimi xVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wxVwVw·˙q˙r=w·˙q+˙w·˙r
159 158 2ralimi qKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wqKrKxVwVw·˙q˙r=w·˙q+˙w·˙r
160 ralrot3 qKrKxVwVw·˙q˙r=w·˙q+˙w·˙rxVqKrKwVw·˙q˙r=w·˙q+˙w·˙r
161 rspn0 VxVqKrKwVw·˙q˙r=w·˙q+˙w·˙rqKrKwVw·˙q˙r=w·˙q+˙w·˙r
162 93 161 ax-mp xVqKrKwVw·˙q˙r=w·˙q+˙w·˙rqKrKwVw·˙q˙r=w·˙q+˙w·˙r
163 oveq1 q=aq˙r=a˙r
164 163 oveq2d q=aw·˙q˙r=w·˙a˙r
165 oveq2 q=aw·˙q=w·˙a
166 165 oveq1d q=aw·˙q+˙w·˙r=w·˙a+˙w·˙r
167 164 166 eqeq12d q=aw·˙q˙r=w·˙q+˙w·˙rw·˙a˙r=w·˙a+˙w·˙r
168 oveq2 r=ba˙r=a˙b
169 168 oveq2d r=bw·˙a˙r=w·˙a˙b
170 oveq2 r=bw·˙r=w·˙b
171 170 oveq2d r=bw·˙a+˙w·˙r=w·˙a+˙w·˙b
172 169 171 eqeq12d r=bw·˙a˙r=w·˙a+˙w·˙rw·˙a˙b=w·˙a+˙w·˙b
173 oveq1 w=cw·˙a˙b=c·˙a˙b
174 oveq1 w=cw·˙a=c·˙a
175 oveq1 w=cw·˙b=c·˙b
176 174 175 oveq12d w=cw·˙a+˙w·˙b=c·˙a+˙c·˙b
177 173 176 eqeq12d w=cw·˙a˙b=w·˙a+˙w·˙bc·˙a˙b=c·˙a+˙c·˙b
178 167 172 177 rspc3v aKbKcVqKrKwVw·˙q˙r=w·˙q+˙w·˙rc·˙a˙b=c·˙a+˙c·˙b
179 162 178 syl5com xVqKrKwVw·˙q˙r=w·˙q+˙w·˙raKbKcVc·˙a˙b=c·˙a+˙c·˙b
180 160 179 sylbi qKrKxVwVw·˙q˙r=w·˙q+˙w·˙raKbKcVc·˙a˙b=c·˙a+˙c·˙b
181 159 180 syl qKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=waKbKcVc·˙a˙b=c·˙a+˙c·˙b
182 181 3ad2ant3 RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=waKbKcVc·˙a˙b=c·˙a+˙c·˙b
183 9 182 ax-mp aKbKcVc·˙a˙b=c·˙a+˙c·˙b
184 10 a1i aKbKcV˙=sK,vVv·˙s
185 oveq12 v=cs=a˙bv·˙s=c·˙a˙b
186 185 ancoms s=a˙bv=cv·˙s=c·˙a˙b
187 186 adantl aKbKcVs=a˙bv=cv·˙s=c·˙a˙b
188 5 6 grpcl FGrpaKbKa˙bK
189 188 3expib FGrpaKbKa˙bK
190 83 189 syl FRingaKbKa˙bK
191 190 3ad2ant2 RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=waKbKa˙bK
192 9 191 ax-mp aKbKa˙bK
193 192 3adant3 aKbKcVa˙bK
194 simp3 aKbKcVcV
195 ovexd aKbKcVc·˙a˙bV
196 184 187 193 194 195 ovmpod aKbKcVa˙b˙c=c·˙a˙b
197 149 adantl aKbKcVs=av=cv·˙s=c·˙a
198 simp1 aKbKcVaK
199 ovexd aKbKcVc·˙aV
200 184 197 198 194 199 ovmpod aKbKcVa˙c=c·˙a
201 oveq12 v=cs=bv·˙s=c·˙b
202 201 ancoms s=bv=cv·˙s=c·˙b
203 202 adantl aKbKcVs=bv=cv·˙s=c·˙b
204 simp2 aKbKcVbK
205 ovexd aKbKcVc·˙bV
206 184 203 204 194 205 ovmpod aKbKcVb˙c=c·˙b
207 200 206 oveq12d aKbKcVa˙c+˙b˙c=c·˙a+˙c·˙b
208 183 196 207 3eqtr4d aKbKcVa˙b˙c=a˙c+˙b˙c
209 208 adantl FCRingaKbKcVa˙b˙c=a˙c+˙b˙c
210 1 2 3 4 5 6 7 8 9 10 11 rmodislmodlem FCRingaKbKcVa×˙b˙c=a˙b˙c
211 10 a1i FCRingaV˙=sK,vVv·˙s
212 oveq12 v=as=1˙v·˙s=a·˙1˙
213 212 ancoms s=1˙v=av·˙s=a·˙1˙
214 213 adantl FCRingaVs=1˙v=av·˙s=a·˙1˙
215 5 8 ringidcl FRing1˙K
216 65 215 syl FCRing1˙K
217 216 adantr FCRingaV1˙K
218 simpr FCRingaVaV
219 ovexd FCRingaVa·˙1˙V
220 211 214 217 218 219 ovmpod FCRingaV1˙˙a=a·˙1˙
221 simprr w·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=ww·˙1˙=w
222 221 2ralimi xVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wxVwVw·˙1˙=w
223 222 2ralimi qKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wqKrKxVwVw·˙1˙=w
224 rspn0 KqKrKxVwVw·˙1˙=wrKxVwVw·˙1˙=w
225 87 224 ax-mp qKrKxVwVw·˙1˙=wrKxVwVw·˙1˙=w
226 rspn0 KrKxVwVw·˙1˙=wxVwVw·˙1˙=w
227 87 226 ax-mp rKxVwVw·˙1˙=wxVwVw·˙1˙=w
228 rspn0 VxVwVw·˙1˙=wwVw·˙1˙=w
229 93 228 ax-mp xVwVw·˙1˙=wwVw·˙1˙=w
230 oveq1 w=aw·˙1˙=a·˙1˙
231 id w=aw=a
232 230 231 eqeq12d w=aw·˙1˙=wa·˙1˙=a
233 232 rspcv aVwVw·˙1˙=wa·˙1˙=a
234 233 adantl FCRingaVwVw·˙1˙=wa·˙1˙=a
235 229 234 syl5com xVwVw·˙1˙=wFCRingaVa·˙1˙=a
236 227 235 syl rKxVwVw·˙1˙=wFCRingaVa·˙1˙=a
237 223 225 236 3syl qKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wFCRingaVa·˙1˙=a
238 237 3ad2ant3 RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wFCRingaVa·˙1˙=a
239 9 238 ax-mp FCRingaVa·˙1˙=a
240 220 239 eqtrd FCRingaV1˙˙a=a
241 27 38 49 60 61 62 63 64 65 71 107 156 209 210 240 islmodd FCRingLLMod