Metamath Proof Explorer


Theorem rngcinvALTV

Description: An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngcsectALTV.c C=RngCatALTVU
rngcsectALTV.b B=BaseC
rngcsectALTV.u φUV
rngcsectALTV.x φXB
rngcsectALTV.y φYB
rngcinvALTV.n N=InvC
Assertion rngcinvALTV φFXNYGFXRngIsomYG=F-1

Proof

Step Hyp Ref Expression
1 rngcsectALTV.c C=RngCatALTVU
2 rngcsectALTV.b B=BaseC
3 rngcsectALTV.u φUV
4 rngcsectALTV.x φXB
5 rngcsectALTV.y φYB
6 rngcinvALTV.n N=InvC
7 1 rngccatALTV UVCCat
8 3 7 syl φCCat
9 eqid SectC=SectC
10 2 6 8 4 5 9 isinv φFXNYGFXSectCYGGYSectCXF
11 eqid BaseX=BaseX
12 1 2 3 4 5 11 9 rngcsectALTV φFXSectCYGFXRngHomoYGYRngHomoXGF=IBaseX
13 df-3an FXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXGF=IBaseX
14 12 13 bitrdi φFXSectCYGFXRngHomoYGYRngHomoXGF=IBaseX
15 eqid BaseY=BaseY
16 1 2 3 5 4 15 9 rngcsectALTV φGYSectCXFGYRngHomoXFXRngHomoYFG=IBaseY
17 3ancoma GYRngHomoXFXRngHomoYFG=IBaseYFXRngHomoYGYRngHomoXFG=IBaseY
18 df-3an FXRngHomoYGYRngHomoXFG=IBaseYFXRngHomoYGYRngHomoXFG=IBaseY
19 17 18 bitri GYRngHomoXFXRngHomoYFG=IBaseYFXRngHomoYGYRngHomoXFG=IBaseY
20 16 19 bitrdi φGYSectCXFFXRngHomoYGYRngHomoXFG=IBaseY
21 14 20 anbi12d φFXSectCYGGYSectCXFFXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFG=IBaseY
22 anandi FXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFG=IBaseYFXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseY
23 21 22 bitrdi φFXSectCYGGYSectCXFFXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseY
24 simplrl FXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseYFXRngHomoY
25 24 adantl φFXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseYFXRngHomoY
26 11 15 rnghmf FXRngHomoYF:BaseXBaseY
27 15 11 rnghmf GYRngHomoXG:BaseYBaseX
28 26 27 anim12i FXRngHomoYGYRngHomoXF:BaseXBaseYG:BaseYBaseX
29 28 ad2antlr FXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseYF:BaseXBaseYG:BaseYBaseX
30 simpr FXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseYFG=IBaseY
31 30 adantl FXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseYFG=IBaseY
32 simpr FXRngHomoYGYRngHomoXGF=IBaseXGF=IBaseX
33 32 ad2antrl FXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseYGF=IBaseX
34 29 31 33 jca32 FXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseYF:BaseXBaseYG:BaseYBaseXFG=IBaseYGF=IBaseX
35 34 adantl φFXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseYF:BaseXBaseYG:BaseYBaseXFG=IBaseYGF=IBaseX
36 fcof1o F:BaseXBaseYG:BaseYBaseXFG=IBaseYGF=IBaseXF:BaseX1-1 ontoBaseYF-1=G
37 eqcom F-1=GG=F-1
38 37 anbi2i F:BaseX1-1 ontoBaseYF-1=GF:BaseX1-1 ontoBaseYG=F-1
39 36 38 sylib F:BaseXBaseYG:BaseYBaseXFG=IBaseYGF=IBaseXF:BaseX1-1 ontoBaseYG=F-1
40 35 39 syl φFXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseYF:BaseX1-1 ontoBaseYG=F-1
41 anass FXRngHomoYF:BaseX1-1 ontoBaseYG=F-1FXRngHomoYF:BaseX1-1 ontoBaseYG=F-1
42 25 40 41 sylanbrc φFXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseYFXRngHomoYF:BaseX1-1 ontoBaseYG=F-1
43 11 15 isrngim XBYBFXRngIsomYFXRngHomoYF:BaseX1-1 ontoBaseY
44 4 5 43 syl2anc φFXRngIsomYFXRngHomoYF:BaseX1-1 ontoBaseY
45 44 anbi1d φFXRngIsomYG=F-1FXRngHomoYF:BaseX1-1 ontoBaseYG=F-1
46 45 adantr φFXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseYFXRngIsomYG=F-1FXRngHomoYF:BaseX1-1 ontoBaseYG=F-1
47 42 46 mpbird φFXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseYFXRngIsomYG=F-1
48 11 15 rngimrnghm FXRngIsomYFXRngHomoY
49 48 ad2antrl φFXRngIsomYG=F-1FXRngHomoY
50 isrngisom XBYBFXRngIsomYFXRngHomoYF-1YRngHomoX
51 4 5 50 syl2anc φFXRngIsomYFXRngHomoYF-1YRngHomoX
52 eleq1 F-1=GF-1YRngHomoXGYRngHomoX
53 52 eqcoms G=F-1F-1YRngHomoXGYRngHomoX
54 53 anbi2d G=F-1FXRngHomoYF-1YRngHomoXFXRngHomoYGYRngHomoX
55 51 54 sylan9bbr G=F-1φFXRngIsomYFXRngHomoYGYRngHomoX
56 simpr FXRngHomoYGYRngHomoXGYRngHomoX
57 55 56 syl6bi G=F-1φFXRngIsomYGYRngHomoX
58 57 com12 FXRngIsomYG=F-1φGYRngHomoX
59 58 expdimp FXRngIsomYG=F-1φGYRngHomoX
60 59 impcom φFXRngIsomYG=F-1GYRngHomoX
61 coeq1 G=F-1GF=F-1F
62 61 ad2antll φFXRngIsomYG=F-1GF=F-1F
63 11 15 rngimf1o FXRngIsomYF:BaseX1-1 ontoBaseY
64 63 ad2antrl φFXRngIsomYG=F-1F:BaseX1-1 ontoBaseY
65 f1ococnv1 F:BaseX1-1 ontoBaseYF-1F=IBaseX
66 64 65 syl φFXRngIsomYG=F-1F-1F=IBaseX
67 62 66 eqtrd φFXRngIsomYG=F-1GF=IBaseX
68 49 60 67 jca31 φFXRngIsomYG=F-1FXRngHomoYGYRngHomoXGF=IBaseX
69 51 biimpcd FXRngIsomYφFXRngHomoYF-1YRngHomoX
70 69 adantr FXRngIsomYG=F-1φFXRngHomoYF-1YRngHomoX
71 70 impcom φFXRngIsomYG=F-1FXRngHomoYF-1YRngHomoX
72 eleq1 G=F-1GYRngHomoXF-1YRngHomoX
73 72 ad2antll φFXRngIsomYG=F-1GYRngHomoXF-1YRngHomoX
74 73 anbi2d φFXRngIsomYG=F-1FXRngHomoYGYRngHomoXFXRngHomoYF-1YRngHomoX
75 71 74 mpbird φFXRngIsomYG=F-1FXRngHomoYGYRngHomoX
76 coeq2 G=F-1FG=FF-1
77 76 ad2antll φFXRngIsomYG=F-1FG=FF-1
78 f1ococnv2 F:BaseX1-1 ontoBaseYFF-1=IBaseY
79 64 78 syl φFXRngIsomYG=F-1FF-1=IBaseY
80 77 79 eqtrd φFXRngIsomYG=F-1FG=IBaseY
81 75 67 80 jca31 φFXRngIsomYG=F-1FXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseY
82 68 75 81 jca31 φFXRngIsomYG=F-1FXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseY
83 47 82 impbida φFXRngHomoYGYRngHomoXGF=IBaseXFXRngHomoYGYRngHomoXFXRngHomoYGYRngHomoXGF=IBaseXFG=IBaseYFXRngIsomYG=F-1
84 10 23 83 3bitrd φFXNYGFXRngIsomYG=F-1