Metamath Proof Explorer


Theorem rrxds

Description: The distance over generalized Euclidean spaces. Compare with df-rrn . (Contributed by Thierry Arnoux, 20-Jun-2019) (Proof shortened by AV, 20-Jul-2019)

Ref Expression
Hypotheses rrxval.r H=msup
rrxbase.b B=BaseH
Assertion rrxds IVfB,gBfldxIfxgx2=distH

Proof

Step Hyp Ref Expression
1 rrxval.r H=msup
2 rrxbase.b B=BaseH
3 1 rrxval IVH=toCPreHilfldfreeLModI
4 3 fveq2d IVdistH=disttoCPreHilfldfreeLModI
5 resrng fld*-Ring
6 srngring fld*-RingfldRing
7 5 6 ax-mp fldRing
8 eqid fldfreeLModI=fldfreeLModI
9 8 frlmlmod fldRingIVfldfreeLModILMod
10 7 9 mpan IVfldfreeLModILMod
11 lmodgrp fldfreeLModILModfldfreeLModIGrp
12 eqid toCPreHilfldfreeLModI=toCPreHilfldfreeLModI
13 eqid normtoCPreHilfldfreeLModI=normtoCPreHilfldfreeLModI
14 eqid -fldfreeLModI=-fldfreeLModI
15 12 13 14 tcphds fldfreeLModIGrpnormtoCPreHilfldfreeLModI-fldfreeLModI=disttoCPreHilfldfreeLModI
16 10 11 15 3syl IVnormtoCPreHilfldfreeLModI-fldfreeLModI=disttoCPreHilfldfreeLModI
17 eqid BasefldfreeLModI=BasefldfreeLModI
18 17 14 grpsubf fldfreeLModIGrp-fldfreeLModI:BasefldfreeLModI×BasefldfreeLModIBasefldfreeLModI
19 10 11 18 3syl IV-fldfreeLModI:BasefldfreeLModI×BasefldfreeLModIBasefldfreeLModI
20 1 2 rrxbase IVB=hI|finSupp0h
21 rebase =Basefld
22 re0g 0=0fld
23 eqid hI|finSupp0h=hI|finSupp0h
24 8 21 22 23 frlmbas fldRingIVhI|finSupp0h=BasefldfreeLModI
25 7 24 mpan IVhI|finSupp0h=BasefldfreeLModI
26 20 25 eqtrd IVB=BasefldfreeLModI
27 26 sqxpeqd IVB×B=BasefldfreeLModI×BasefldfreeLModI
28 27 26 feq23d IV-fldfreeLModI:B×BB-fldfreeLModI:BasefldfreeLModI×BasefldfreeLModIBasefldfreeLModI
29 19 28 mpbird IV-fldfreeLModI:B×BB
30 29 fovcdmda IVfBgBf-fldfreeLModIgB
31 29 ffnd IV-fldfreeLModIFnB×B
32 fnov -fldfreeLModIFnB×B-fldfreeLModI=fB,gBf-fldfreeLModIg
33 31 32 sylib IV-fldfreeLModI=fB,gBf-fldfreeLModIg
34 1 2 rrxnm IVhBfldxIhx2=normH
35 3 fveq2d IVnormH=normtoCPreHilfldfreeLModI
36 34 35 eqtr2d IVnormtoCPreHilfldfreeLModI=hBfldxIhx2
37 fveq1 h=f-fldfreeLModIghx=f-fldfreeLModIgx
38 37 oveq1d h=f-fldfreeLModIghx2=f-fldfreeLModIgx2
39 38 mpteq2dv h=f-fldfreeLModIgxIhx2=xIf-fldfreeLModIgx2
40 39 oveq2d h=f-fldfreeLModIgfldxIhx2=fldxIf-fldfreeLModIgx2
41 40 fveq2d h=f-fldfreeLModIgfldxIhx2=fldxIf-fldfreeLModIgx2
42 30 33 36 41 fmpoco IVnormtoCPreHilfldfreeLModI-fldfreeLModI=fB,gBfldxIf-fldfreeLModIgx2
43 simp1 IVfBgBIV
44 simprl IVfBgBfB
45 26 adantr IVfBgBB=BasefldfreeLModI
46 44 45 eleqtrd IVfBgBfBasefldfreeLModI
47 46 3impb IVfBgBfBasefldfreeLModI
48 8 21 17 frlmbasmap IVfBasefldfreeLModIfI
49 43 47 48 syl2anc IVfBgBfI
50 elmapi fIf:I
51 49 50 syl IVfBgBf:I
52 51 ffnd IVfBgBfFnI
53 simprr IVfBgBgB
54 53 45 eleqtrd IVfBgBgBasefldfreeLModI
55 54 3impb IVfBgBgBasefldfreeLModI
56 8 21 17 frlmbasmap IVgBasefldfreeLModIgI
57 43 55 56 syl2anc IVfBgBgI
58 elmapi gIg:I
59 57 58 syl IVfBgBg:I
60 59 ffnd IVfBgBgFnI
61 inidm II=I
62 eqidd IVfBgBxIfx=fx
63 eqidd IVfBgBxIgx=gx
64 52 60 43 43 61 62 63 offval IVfBgBf-fldfg=xIfx-fldgx
65 7 a1i IVfBgBfldRing
66 simpl IVfBgBIV
67 eqid -fld=-fld
68 8 17 65 66 46 54 67 14 frlmsubgval IVfBgBf-fldfreeLModIg=f-fldfg
69 68 3impb IVfBgBf-fldfreeLModIg=f-fldfg
70 51 ffvelcdmda IVfBgBxIfx
71 59 ffvelcdmda IVfBgBxIgx
72 67 resubgval fxgxfxgx=fx-fldgx
73 70 71 72 syl2anc IVfBgBxIfxgx=fx-fldgx
74 73 mpteq2dva IVfBgBxIfxgx=xIfx-fldgx
75 64 69 74 3eqtr4d IVfBgBf-fldfreeLModIg=xIfxgx
76 70 71 resubcld IVfBgBxIfxgx
77 75 76 fvmpt2d IVfBgBxIf-fldfreeLModIgx=fxgx
78 77 oveq1d IVfBgBxIf-fldfreeLModIgx2=fxgx2
79 78 mpteq2dva IVfBgBxIf-fldfreeLModIgx2=xIfxgx2
80 79 oveq2d IVfBgBfldxIf-fldfreeLModIgx2=fldxIfxgx2
81 80 fveq2d IVfBgBfldxIf-fldfreeLModIgx2=fldxIfxgx2
82 81 mpoeq3dva IVfB,gBfldxIf-fldfreeLModIgx2=fB,gBfldxIfxgx2
83 42 82 eqtrd IVnormtoCPreHilfldfreeLModI-fldfreeLModI=fB,gBfldxIfxgx2
84 4 16 83 3eqtr2rd IVfB,gBfldxIfxgx2=distH