Metamath Proof Explorer


Theorem rrxdstprj1

Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015) (Revised by Thierry Arnoux, 7-Jul-2019)

Ref Expression
Hypotheses rrxmval.1 X=hI|finSupp0h
rrxmval.d D=distmsup
rrxdstprj1.1 M=abs2
Assertion rrxdstprj1 IVAIFXGXFAMGAFDG

Proof

Step Hyp Ref Expression
1 rrxmval.1 X=hI|finSupp0h
2 rrxmval.d D=distmsup
3 rrxdstprj1.1 M=abs2
4 simplll IVAIFXGXAsupp0Fsupp0GIV
5 simpr IVAIFXGXAsupp0Fsupp0GAsupp0Fsupp0G
6 simplr IVAIFXGXAsupp0Fsupp0GFXGX
7 simprl IVAsupp0Fsupp0GFXGXFX
8 1 7 rrxfsupp IVAsupp0Fsupp0GFXGXFsupp0Fin
9 simprr IVAsupp0Fsupp0GFXGXGX
10 1 9 rrxfsupp IVAsupp0Fsupp0GFXGXGsupp0Fin
11 unfi Fsupp0FinGsupp0Finsupp0Fsupp0GFin
12 8 10 11 syl2anc IVAsupp0Fsupp0GFXGXsupp0Fsupp0GFin
13 1 7 rrxsuppss IVAsupp0Fsupp0GFXGXFsupp0I
14 1 9 rrxsuppss IVAsupp0Fsupp0GFXGXGsupp0I
15 13 14 unssd IVAsupp0Fsupp0GFXGXsupp0Fsupp0GI
16 15 sselda IVAsupp0Fsupp0GFXGXksupp0Fsupp0GkI
17 1 7 rrxf IVAsupp0Fsupp0GFXGXF:I
18 17 ffvelcdmda IVAsupp0Fsupp0GFXGXkIFk
19 1 9 rrxf IVAsupp0Fsupp0GFXGXG:I
20 19 ffvelcdmda IVAsupp0Fsupp0GFXGXkIGk
21 18 20 resubcld IVAsupp0Fsupp0GFXGXkIFkGk
22 21 resqcld IVAsupp0Fsupp0GFXGXkIFkGk2
23 16 22 syldan IVAsupp0Fsupp0GFXGXksupp0Fsupp0GFkGk2
24 21 sqge0d IVAsupp0Fsupp0GFXGXkI0FkGk2
25 16 24 syldan IVAsupp0Fsupp0GFXGXksupp0Fsupp0G0FkGk2
26 fveq2 k=AFk=FA
27 fveq2 k=AGk=GA
28 26 27 oveq12d k=AFkGk=FAGA
29 28 oveq1d k=AFkGk2=FAGA2
30 simplr IVAsupp0Fsupp0GFXGXAsupp0Fsupp0G
31 12 23 25 29 30 fsumge1 IVAsupp0Fsupp0GFXGXFAGA2ksupp0Fsupp0GFkGk2
32 15 30 sseldd IVAsupp0Fsupp0GFXGXAI
33 17 32 ffvelcdmd IVAsupp0Fsupp0GFXGXFA
34 19 32 ffvelcdmd IVAsupp0Fsupp0GFXGXGA
35 33 34 resubcld IVAsupp0Fsupp0GFXGXFAGA
36 absresq FAGAFAGA2=FAGA2
37 35 36 syl IVAsupp0Fsupp0GFXGXFAGA2=FAGA2
38 12 23 fsumrecl IVAsupp0Fsupp0GFXGXksupp0Fsupp0GFkGk2
39 12 23 25 fsumge0 IVAsupp0Fsupp0GFXGX0ksupp0Fsupp0GFkGk2
40 resqrtth ksupp0Fsupp0GFkGk20ksupp0Fsupp0GFkGk2ksupp0Fsupp0GFkGk22=ksupp0Fsupp0GFkGk2
41 38 39 40 syl2anc IVAsupp0Fsupp0GFXGXksupp0Fsupp0GFkGk22=ksupp0Fsupp0GFkGk2
42 31 37 41 3brtr4d IVAsupp0Fsupp0GFXGXFAGA2ksupp0Fsupp0GFkGk22
43 35 recnd IVAsupp0Fsupp0GFXGXFAGA
44 43 abscld IVAsupp0Fsupp0GFXGXFAGA
45 38 39 resqrtcld IVAsupp0Fsupp0GFXGXksupp0Fsupp0GFkGk2
46 43 absge0d IVAsupp0Fsupp0GFXGX0FAGA
47 38 39 sqrtge0d IVAsupp0Fsupp0GFXGX0ksupp0Fsupp0GFkGk2
48 44 45 46 47 le2sqd IVAsupp0Fsupp0GFXGXFAGAksupp0Fsupp0GFkGk2FAGA2ksupp0Fsupp0GFkGk22
49 42 48 mpbird IVAsupp0Fsupp0GFXGXFAGAksupp0Fsupp0GFkGk2
50 3 remetdval FAGAFAMGA=FAGA
51 33 34 50 syl2anc IVAsupp0Fsupp0GFXGXFAMGA=FAGA
52 1 2 rrxmval IVFXGXFDG=ksupp0Fsupp0GFkGk2
53 52 3expb IVFXGXFDG=ksupp0Fsupp0GFkGk2
54 53 adantlr IVAsupp0Fsupp0GFXGXFDG=ksupp0Fsupp0GFkGk2
55 49 51 54 3brtr4d IVAsupp0Fsupp0GFXGXFAMGAFDG
56 4 5 6 55 syl21anc IVAIFXGXAsupp0Fsupp0GFAMGAFDG
57 simplll IVAIFXGXAIsupp0Fsupp0GIV
58 simplrl IVAIFXGXAIsupp0Fsupp0GFX
59 ssun1 Fsupp0supp0Fsupp0G
60 59 a1i IVAIFXGXFsupp0supp0Fsupp0G
61 60 sscond IVAIFXGXIsupp0Fsupp0GIsupp0F
62 61 sselda IVAIFXGXAIsupp0Fsupp0GAIsupp0F
63 simpr IVFXFX
64 1 63 rrxf IVFXF:I
65 ssidd IVFXFsupp0Fsupp0
66 simpl IVFXIV
67 0red IVFX0
68 64 65 66 67 suppssr IVFXAIsupp0FFA=0
69 57 58 62 68 syl21anc IVAIFXGXAIsupp0Fsupp0GFA=0
70 0red IVAIFXGXAIsupp0Fsupp0G0
71 69 70 eqeltrd IVAIFXGXAIsupp0Fsupp0GFA
72 simplrr IVAIFXGXAIsupp0Fsupp0GGX
73 ssun2 Gsupp0supp0Fsupp0G
74 73 a1i IVAIFXGXGsupp0supp0Fsupp0G
75 74 sscond IVAIFXGXIsupp0Fsupp0GIsupp0G
76 75 sselda IVAIFXGXAIsupp0Fsupp0GAIsupp0G
77 simpr IVGXGX
78 1 77 rrxf IVGXG:I
79 ssidd IVGXGsupp0Gsupp0
80 simpl IVGXIV
81 0red IVGX0
82 78 79 80 81 suppssr IVGXAIsupp0GGA=0
83 57 72 76 82 syl21anc IVAIFXGXAIsupp0Fsupp0GGA=0
84 83 70 eqeltrd IVAIFXGXAIsupp0Fsupp0GGA
85 71 84 50 syl2anc IVAIFXGXAIsupp0Fsupp0GFAMGA=FAGA
86 69 83 oveq12d IVAIFXGXAIsupp0Fsupp0GFAGA=00
87 0m0e0 00=0
88 86 87 eqtrdi IVAIFXGXAIsupp0Fsupp0GFAGA=0
89 88 abs00bd IVAIFXGXAIsupp0Fsupp0GFAGA=0
90 85 89 eqtrd IVAIFXGXAIsupp0Fsupp0GFAMGA=0
91 1 2 rrxmet IVDMetX
92 91 ad3antrrr IVAIFXGXAIsupp0Fsupp0GDMetX
93 metge0 DMetXFXGX0FDG
94 92 58 72 93 syl3anc IVAIFXGXAIsupp0Fsupp0G0FDG
95 90 94 eqbrtrd IVAIFXGXAIsupp0Fsupp0GFAMGAFDG
96 simplr IVAIFXGXAI
97 simprl IVAIFXGXFX
98 1 97 rrxsuppss IVAIFXGXFsupp0I
99 simprr IVAIFXGXGX
100 1 99 rrxsuppss IVAIFXGXGsupp0I
101 98 100 unssd IVAIFXGXsupp0Fsupp0GI
102 undif supp0Fsupp0GIsupp0Fsupp0GIsupp0Fsupp0G=I
103 101 102 sylib IVAIFXGXsupp0Fsupp0GIsupp0Fsupp0G=I
104 96 103 eleqtrrd IVAIFXGXAsupp0Fsupp0GIsupp0Fsupp0G
105 elun Asupp0Fsupp0GIsupp0Fsupp0GAsupp0Fsupp0GAIsupp0Fsupp0G
106 104 105 sylib IVAIFXGXAsupp0Fsupp0GAIsupp0Fsupp0G
107 56 95 106 mpjaodan IVAIFXGXFAMGAFDG