Metamath Proof Explorer


Theorem rrxtopnfi

Description: The topology of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxtopnfi.1 φ I Fin
Assertion rrxtopnfi φ TopOpen I = MetOpen f I , g I k I f k g k 2

Proof

Step Hyp Ref Expression
1 rrxtopnfi.1 φ I Fin
2 1 rrxtopn φ TopOpen I = MetOpen f Base I , g Base I fld x I f x g x 2
3 eqid I = I
4 eqid Base I = Base I
5 1 3 4 rrxbasefi φ Base I = I
6 5 adantr φ f Base I Base I = I
7 simpl φ f Base I g Base I φ
8 simprl φ f Base I g Base I f Base I
9 simpr φ f Base I f Base I
10 9 6 eleqtrd φ f Base I f I
11 8 10 syldan φ f Base I g Base I f I
12 simprr φ f Base I g Base I g Base I
13 simpr φ g Base I g Base I
14 5 adantr φ g Base I Base I = I
15 13 14 eleqtrd φ g Base I g I
16 12 15 syldan φ f Base I g Base I g I
17 elmapi f I f : I
18 17 adantr f I g I f : I
19 18 ffvelrnda f I g I x I f x
20 elmapi g I g : I
21 20 adantl f I g I g : I
22 21 ffvelrnda f I g I x I g x
23 19 22 resubcld f I g I x I f x g x
24 23 resqcld f I g I x I f x g x 2
25 eqid x I f x g x 2 = x I f x g x 2
26 24 25 fmptd f I g I x I f x g x 2 : I
27 26 3adant1 φ f I g I x I f x g x 2 : I
28 1 3ad2ant1 φ f I g I I Fin
29 0red φ f I g I 0
30 27 28 29 fidmfisupp φ f I g I finSupp 0 x I f x g x 2
31 regsumsupp x I f x g x 2 : I finSupp 0 x I f x g x 2 I Fin fld x I f x g x 2 = k x I f x g x 2 supp 0 x I f x g x 2 k
32 27 30 28 31 syl3anc φ f I g I fld x I f x g x 2 = k x I f x g x 2 supp 0 x I f x g x 2 k
33 ax-resscn
34 33 a1i f I
35 17 34 fssd f I f : I
36 35 3ad2ant2 φ f I g I f : I
37 36 ffvelrnda φ f I g I x I f x
38 33 a1i g I
39 20 38 fssd g I g : I
40 39 3ad2ant3 φ f I g I g : I
41 40 ffvelrnda φ f I g I x I g x
42 37 41 subcld φ f I g I x I f x g x
43 42 sqcld φ f I g I x I f x g x 2
44 43 25 fmptd φ f I g I x I f x g x 2 : I
45 28 44 fsumsupp0 φ f I g I k x I f x g x 2 supp 0 x I f x g x 2 k = k I x I f x g x 2 k
46 eqidd φ f I g I k I x I f x g x 2 = x I f x g x 2
47 fveq2 x = k f x = f k
48 fveq2 x = k g x = g k
49 47 48 oveq12d x = k f x g x = f k g k
50 49 oveq1d x = k f x g x 2 = f k g k 2
51 50 adantl φ f I g I k I x = k f x g x 2 = f k g k 2
52 simpr φ f I g I k I k I
53 ovexd φ f I g I k I f k g k 2 V
54 46 51 52 53 fvmptd φ f I g I k I x I f x g x 2 k = f k g k 2
55 54 sumeq2dv φ f I g I k I x I f x g x 2 k = k I f k g k 2
56 32 45 55 3eqtrd φ f I g I fld x I f x g x 2 = k I f k g k 2
57 56 fveq2d φ f I g I fld x I f x g x 2 = k I f k g k 2
58 7 11 16 57 syl3anc φ f Base I g Base I fld x I f x g x 2 = k I f k g k 2
59 5 6 58 mpoeq123dva φ f Base I , g Base I fld x I f x g x 2 = f I , g I k I f k g k 2
60 59 fveq2d φ MetOpen f Base I , g Base I fld x I f x g x 2 = MetOpen f I , g I k I f k g k 2
61 2 60 eqtrd φ TopOpen I = MetOpen f I , g I k I f k g k 2