Step |
Hyp |
Ref |
Expression |
1 |
|
rrxtopnfi.1 |
|
2 |
1
|
rrxtopn |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
1 3 4
|
rrxbasefi |
|
6 |
5
|
adantr |
|
7 |
|
simpl |
|
8 |
|
simprl |
|
9 |
|
simpr |
|
10 |
9 6
|
eleqtrd |
|
11 |
8 10
|
syldan |
|
12 |
|
simprr |
|
13 |
|
simpr |
|
14 |
5
|
adantr |
|
15 |
13 14
|
eleqtrd |
|
16 |
12 15
|
syldan |
|
17 |
|
elmapi |
|
18 |
17
|
adantr |
|
19 |
18
|
ffvelrnda |
|
20 |
|
elmapi |
|
21 |
20
|
adantl |
|
22 |
21
|
ffvelrnda |
|
23 |
19 22
|
resubcld |
|
24 |
23
|
resqcld |
|
25 |
|
eqid |
|
26 |
24 25
|
fmptd |
|
27 |
26
|
3adant1 |
|
28 |
1
|
3ad2ant1 |
|
29 |
|
0red |
|
30 |
27 28 29
|
fidmfisupp |
|
31 |
|
regsumsupp |
|
32 |
27 30 28 31
|
syl3anc |
|
33 |
|
ax-resscn |
|
34 |
33
|
a1i |
|
35 |
17 34
|
fssd |
|
36 |
35
|
3ad2ant2 |
|
37 |
36
|
ffvelrnda |
|
38 |
33
|
a1i |
|
39 |
20 38
|
fssd |
|
40 |
39
|
3ad2ant3 |
|
41 |
40
|
ffvelrnda |
|
42 |
37 41
|
subcld |
|
43 |
42
|
sqcld |
|
44 |
43 25
|
fmptd |
|
45 |
28 44
|
fsumsupp0 |
|
46 |
|
eqidd |
|
47 |
|
fveq2 |
|
48 |
|
fveq2 |
|
49 |
47 48
|
oveq12d |
|
50 |
49
|
oveq1d |
|
51 |
50
|
adantl |
|
52 |
|
simpr |
|
53 |
|
ovexd |
|
54 |
46 51 52 53
|
fvmptd |
|
55 |
54
|
sumeq2dv |
|
56 |
32 45 55
|
3eqtrd |
|
57 |
56
|
fveq2d |
|
58 |
7 11 16 57
|
syl3anc |
|
59 |
5 6 58
|
mpoeq123dva |
|
60 |
59
|
fveq2d |
|
61 |
2 60
|
eqtrd |
|