Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Godel-sets of formulas - part 1
satffunlem1lem1
Next ⟩
satffunlem1lem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
satffunlem1lem1
Description:
Lemma for
satffunlem1
.
(Contributed by
AV
, 17-Oct-2023)
Ref
Expression
Assertion
satffunlem1lem1
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
→
Fun
x
y
|
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢
u
=
s
→
1
st
u
=
1
st
s
2
fveq2
⊢
v
=
r
→
1
st
v
=
1
st
r
3
1
2
oveqan12d
⊢
u
=
s
∧
v
=
r
→
1
st
u
⊼
𝑔
1
st
v
=
1
st
s
⊼
𝑔
1
st
r
4
3
eqeq2d
⊢
u
=
s
∧
v
=
r
→
x
=
1
st
u
⊼
𝑔
1
st
v
↔
x
=
1
st
s
⊼
𝑔
1
st
r
5
fveq2
⊢
u
=
s
→
2
nd
u
=
2
nd
s
6
fveq2
⊢
v
=
r
→
2
nd
v
=
2
nd
r
7
5
6
ineqan12d
⊢
u
=
s
∧
v
=
r
→
2
nd
u
∩
2
nd
v
=
2
nd
s
∩
2
nd
r
8
7
difeq2d
ω
ω
⊢
u
=
s
∧
v
=
r
→
M
ω
∖
2
nd
u
∩
2
nd
v
=
M
ω
∖
2
nd
s
∩
2
nd
r
9
8
eqeq2d
ω
ω
⊢
u
=
s
∧
v
=
r
→
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
↔
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
10
4
9
anbi12d
ω
ω
⊢
u
=
s
∧
v
=
r
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
↔
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
11
10
cbvrexdva
ω
ω
⊢
u
=
s
→
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
↔
∃
r
∈
M
Sat
E
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
12
simpr
⊢
u
=
s
∧
i
=
j
→
i
=
j
13
1
adantr
⊢
u
=
s
∧
i
=
j
→
1
st
u
=
1
st
s
14
12
13
goaleq12d
⊢
u
=
s
∧
i
=
j
→
∀
𝑔
i
1
st
u
=
∀
𝑔
j
1
st
s
15
14
eqeq2d
⊢
u
=
s
∧
i
=
j
→
x
=
∀
𝑔
i
1
st
u
↔
x
=
∀
𝑔
j
1
st
s
16
opeq1
⊢
i
=
j
→
i
k
=
j
k
17
16
sneqd
⊢
i
=
j
→
i
k
=
j
k
18
sneq
⊢
i
=
j
→
i
=
j
19
18
difeq2d
ω
ω
⊢
i
=
j
→
ω
∖
i
=
ω
∖
j
20
19
reseq2d
ω
ω
⊢
i
=
j
→
f
↾
ω
∖
i
=
f
↾
ω
∖
j
21
17
20
uneq12d
ω
ω
⊢
i
=
j
→
i
k
∪
f
↾
ω
∖
i
=
j
k
∪
f
↾
ω
∖
j
22
21
adantl
ω
ω
⊢
u
=
s
∧
i
=
j
→
i
k
∪
f
↾
ω
∖
i
=
j
k
∪
f
↾
ω
∖
j
23
5
adantr
⊢
u
=
s
∧
i
=
j
→
2
nd
u
=
2
nd
s
24
22
23
eleq12d
ω
ω
⊢
u
=
s
∧
i
=
j
→
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
↔
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
25
24
ralbidv
ω
ω
⊢
u
=
s
∧
i
=
j
→
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
↔
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
26
25
rabbidv
ω
ω
ω
ω
⊢
u
=
s
∧
i
=
j
→
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
27
26
eqeq2d
ω
ω
ω
ω
⊢
u
=
s
∧
i
=
j
→
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
↔
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
28
15
27
anbi12d
ω
ω
ω
ω
⊢
u
=
s
∧
i
=
j
→
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
↔
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
29
28
cbvrexdva
ω
ω
ω
ω
ω
ω
⊢
u
=
s
→
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
↔
∃
j
∈
ω
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
30
11
29
orbi12d
ω
ω
ω
ω
ω
ω
ω
ω
⊢
u
=
s
→
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
↔
∃
r
∈
M
Sat
E
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∨
∃
j
∈
ω
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
31
30
cbvrexvw
ω
ω
ω
ω
ω
ω
ω
ω
⊢
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
↔
∃
s
∈
M
Sat
E
N
∃
r
∈
M
Sat
E
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∨
∃
j
∈
ω
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
32
simp-4l
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
∧
u
∈
M
Sat
E
N
∧
v
∈
M
Sat
E
N
→
Fun
M
Sat
E
N
33
simpr
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
∧
u
∈
M
Sat
E
N
→
u
∈
M
Sat
E
N
34
33
anim1i
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
∧
u
∈
M
Sat
E
N
∧
v
∈
M
Sat
E
N
→
u
∈
M
Sat
E
N
∧
v
∈
M
Sat
E
N
35
simpr
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
→
s
∈
M
Sat
E
N
36
35
anim1i
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
→
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
37
36
ad2antrr
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
∧
u
∈
M
Sat
E
N
∧
v
∈
M
Sat
E
N
→
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
38
satffunlem
ω
ω
⊢
Fun
M
Sat
E
N
∧
u
∈
M
Sat
E
N
∧
v
∈
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
∧
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
z
=
y
39
38
eqcomd
ω
ω
⊢
Fun
M
Sat
E
N
∧
u
∈
M
Sat
E
N
∧
v
∈
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
∧
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
40
39
3exp
ω
ω
⊢
Fun
M
Sat
E
N
∧
u
∈
M
Sat
E
N
∧
v
∈
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
41
32
34
37
40
syl3anc
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
∧
u
∈
M
Sat
E
N
∧
v
∈
M
Sat
E
N
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
42
41
rexlimdva
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
∧
u
∈
M
Sat
E
N
→
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
43
eqeq1
⊢
x
=
∀
𝑔
i
1
st
u
→
x
=
1
st
s
⊼
𝑔
1
st
r
↔
∀
𝑔
i
1
st
u
=
1
st
s
⊼
𝑔
1
st
r
44
df-goal
⊢
∀
𝑔
i
1
st
u
=
2
𝑜
i
1
st
u
45
fvex
⊢
1
st
s
∈
V
46
fvex
⊢
1
st
r
∈
V
47
gonafv
⊢
1
st
s
∈
V
∧
1
st
r
∈
V
→
1
st
s
⊼
𝑔
1
st
r
=
1
𝑜
1
st
s
1
st
r
48
45
46
47
mp2an
⊢
1
st
s
⊼
𝑔
1
st
r
=
1
𝑜
1
st
s
1
st
r
49
44
48
eqeq12i
⊢
∀
𝑔
i
1
st
u
=
1
st
s
⊼
𝑔
1
st
r
↔
2
𝑜
i
1
st
u
=
1
𝑜
1
st
s
1
st
r
50
2oex
⊢
2
𝑜
∈
V
51
opex
⊢
i
1
st
u
∈
V
52
50
51
opth
⊢
2
𝑜
i
1
st
u
=
1
𝑜
1
st
s
1
st
r
↔
2
𝑜
=
1
𝑜
∧
i
1
st
u
=
1
st
s
1
st
r
53
1one2o
⊢
1
𝑜
≠
2
𝑜
54
df-ne
⊢
1
𝑜
≠
2
𝑜
↔
¬
1
𝑜
=
2
𝑜
55
pm2.21
ω
⊢
¬
1
𝑜
=
2
𝑜
→
1
𝑜
=
2
𝑜
→
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
56
54
55
sylbi
ω
⊢
1
𝑜
≠
2
𝑜
→
1
𝑜
=
2
𝑜
→
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
57
53
56
ax-mp
ω
⊢
1
𝑜
=
2
𝑜
→
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
58
57
eqcoms
ω
⊢
2
𝑜
=
1
𝑜
→
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
59
58
adantr
ω
⊢
2
𝑜
=
1
𝑜
∧
i
1
st
u
=
1
st
s
1
st
r
→
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
60
52
59
sylbi
ω
⊢
2
𝑜
i
1
st
u
=
1
𝑜
1
st
s
1
st
r
→
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
61
49
60
sylbi
ω
⊢
∀
𝑔
i
1
st
u
=
1
st
s
⊼
𝑔
1
st
r
→
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
62
43
61
syl6bi
ω
⊢
x
=
∀
𝑔
i
1
st
u
→
x
=
1
st
s
⊼
𝑔
1
st
r
→
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
63
62
impd
ω
⊢
x
=
∀
𝑔
i
1
st
u
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
64
63
adantr
ω
ω
ω
⊢
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
65
64
a1i
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
∧
u
∈
M
Sat
E
N
∧
i
∈
ω
→
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
66
65
rexlimdva
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
∧
u
∈
M
Sat
E
N
→
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
67
42
66
jaod
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
∧
u
∈
M
Sat
E
N
→
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
68
67
rexlimdva
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
→
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
z
69
68
com23
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
r
∈
M
Sat
E
N
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
70
69
rexlimdva
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
→
∃
r
∈
M
Sat
E
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
71
eqeq1
⊢
x
=
∀
𝑔
j
1
st
s
→
x
=
1
st
u
⊼
𝑔
1
st
v
↔
∀
𝑔
j
1
st
s
=
1
st
u
⊼
𝑔
1
st
v
72
df-goal
⊢
∀
𝑔
j
1
st
s
=
2
𝑜
j
1
st
s
73
fvex
⊢
1
st
u
∈
V
74
fvex
⊢
1
st
v
∈
V
75
gonafv
⊢
1
st
u
∈
V
∧
1
st
v
∈
V
→
1
st
u
⊼
𝑔
1
st
v
=
1
𝑜
1
st
u
1
st
v
76
73
74
75
mp2an
⊢
1
st
u
⊼
𝑔
1
st
v
=
1
𝑜
1
st
u
1
st
v
77
72
76
eqeq12i
⊢
∀
𝑔
j
1
st
s
=
1
st
u
⊼
𝑔
1
st
v
↔
2
𝑜
j
1
st
s
=
1
𝑜
1
st
u
1
st
v
78
opex
⊢
j
1
st
s
∈
V
79
50
78
opth
⊢
2
𝑜
j
1
st
s
=
1
𝑜
1
st
u
1
st
v
↔
2
𝑜
=
1
𝑜
∧
j
1
st
s
=
1
st
u
1
st
v
80
pm2.21
⊢
¬
1
𝑜
=
2
𝑜
→
1
𝑜
=
2
𝑜
→
y
=
z
81
54
80
sylbi
⊢
1
𝑜
≠
2
𝑜
→
1
𝑜
=
2
𝑜
→
y
=
z
82
53
81
ax-mp
⊢
1
𝑜
=
2
𝑜
→
y
=
z
83
82
eqcoms
⊢
2
𝑜
=
1
𝑜
→
y
=
z
84
83
adantr
⊢
2
𝑜
=
1
𝑜
∧
j
1
st
s
=
1
st
u
1
st
v
→
y
=
z
85
79
84
sylbi
⊢
2
𝑜
j
1
st
s
=
1
𝑜
1
st
u
1
st
v
→
y
=
z
86
77
85
sylbi
⊢
∀
𝑔
j
1
st
s
=
1
st
u
⊼
𝑔
1
st
v
→
y
=
z
87
71
86
syl6bi
⊢
x
=
∀
𝑔
j
1
st
s
→
x
=
1
st
u
⊼
𝑔
1
st
v
→
y
=
z
88
87
adantr
ω
ω
⊢
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
x
=
1
st
u
⊼
𝑔
1
st
v
→
y
=
z
89
88
com12
ω
ω
⊢
x
=
1
st
u
⊼
𝑔
1
st
v
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
y
=
z
90
89
adantr
ω
ω
ω
⊢
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
y
=
z
91
90
a1i
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
∧
u
∈
M
Sat
E
N
∧
v
∈
M
Sat
E
N
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
y
=
z
92
91
rexlimdva
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
∧
u
∈
M
Sat
E
N
→
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
y
=
z
93
eqeq1
⊢
x
=
∀
𝑔
i
1
st
u
→
x
=
∀
𝑔
j
1
st
s
↔
∀
𝑔
i
1
st
u
=
∀
𝑔
j
1
st
s
94
44
72
eqeq12i
⊢
∀
𝑔
i
1
st
u
=
∀
𝑔
j
1
st
s
↔
2
𝑜
i
1
st
u
=
2
𝑜
j
1
st
s
95
50
51
opth
⊢
2
𝑜
i
1
st
u
=
2
𝑜
j
1
st
s
↔
2
𝑜
=
2
𝑜
∧
i
1
st
u
=
j
1
st
s
96
vex
⊢
i
∈
V
97
96
73
opth
⊢
i
1
st
u
=
j
1
st
s
↔
i
=
j
∧
1
st
u
=
1
st
s
98
97
anbi2i
⊢
2
𝑜
=
2
𝑜
∧
i
1
st
u
=
j
1
st
s
↔
2
𝑜
=
2
𝑜
∧
i
=
j
∧
1
st
u
=
1
st
s
99
94
95
98
3bitri
⊢
∀
𝑔
i
1
st
u
=
∀
𝑔
j
1
st
s
↔
2
𝑜
=
2
𝑜
∧
i
=
j
∧
1
st
u
=
1
st
s
100
93
99
bitrdi
⊢
x
=
∀
𝑔
i
1
st
u
→
x
=
∀
𝑔
j
1
st
s
↔
2
𝑜
=
2
𝑜
∧
i
=
j
∧
1
st
u
=
1
st
s
101
100
adantl
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
∧
u
∈
M
Sat
E
N
∧
i
∈
ω
∧
x
=
∀
𝑔
i
1
st
u
→
x
=
∀
𝑔
j
1
st
s
↔
2
𝑜
=
2
𝑜
∧
i
=
j
∧
1
st
u
=
1
st
s
102
funfv1st2nd
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
→
M
Sat
E
N
1
st
s
=
2
nd
s
103
102
ex
⊢
Fun
M
Sat
E
N
→
s
∈
M
Sat
E
N
→
M
Sat
E
N
1
st
s
=
2
nd
s
104
funfv1st2nd
⊢
Fun
M
Sat
E
N
∧
u
∈
M
Sat
E
N
→
M
Sat
E
N
1
st
u
=
2
nd
u
105
104
ex
⊢
Fun
M
Sat
E
N
→
u
∈
M
Sat
E
N
→
M
Sat
E
N
1
st
u
=
2
nd
u
106
fveqeq2
⊢
1
st
u
=
1
st
s
→
M
Sat
E
N
1
st
u
=
2
nd
u
↔
M
Sat
E
N
1
st
s
=
2
nd
u
107
eqtr2
⊢
M
Sat
E
N
1
st
s
=
2
nd
u
∧
M
Sat
E
N
1
st
s
=
2
nd
s
→
2
nd
u
=
2
nd
s
108
opeq1
⊢
j
=
i
→
j
k
=
i
k
109
108
sneqd
⊢
j
=
i
→
j
k
=
i
k
110
sneq
⊢
j
=
i
→
j
=
i
111
110
difeq2d
ω
ω
⊢
j
=
i
→
ω
∖
j
=
ω
∖
i
112
111
reseq2d
ω
ω
⊢
j
=
i
→
f
↾
ω
∖
j
=
f
↾
ω
∖
i
113
109
112
uneq12d
ω
ω
⊢
j
=
i
→
j
k
∪
f
↾
ω
∖
j
=
i
k
∪
f
↾
ω
∖
i
114
113
eqcoms
ω
ω
⊢
i
=
j
→
j
k
∪
f
↾
ω
∖
j
=
i
k
∪
f
↾
ω
∖
i
115
114
adantl
ω
ω
⊢
2
nd
u
=
2
nd
s
∧
i
=
j
→
j
k
∪
f
↾
ω
∖
j
=
i
k
∪
f
↾
ω
∖
i
116
simpl
⊢
2
nd
u
=
2
nd
s
∧
i
=
j
→
2
nd
u
=
2
nd
s
117
116
eqcomd
⊢
2
nd
u
=
2
nd
s
∧
i
=
j
→
2
nd
s
=
2
nd
u
118
115
117
eleq12d
ω
ω
⊢
2
nd
u
=
2
nd
s
∧
i
=
j
→
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
↔
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
119
118
ralbidv
ω
ω
⊢
2
nd
u
=
2
nd
s
∧
i
=
j
→
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
↔
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
120
119
rabbidv
ω
ω
ω
ω
⊢
2
nd
u
=
2
nd
s
∧
i
=
j
→
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
121
eqeq12
ω
ω
ω
ω
ω
ω
ω
ω
⊢
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
↔
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
122
120
121
syl5ibrcom
ω
ω
ω
ω
⊢
2
nd
u
=
2
nd
s
∧
i
=
j
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
123
122
exp4b
ω
ω
ω
ω
⊢
2
nd
u
=
2
nd
s
→
i
=
j
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
124
107
123
syl
ω
ω
ω
ω
⊢
M
Sat
E
N
1
st
s
=
2
nd
u
∧
M
Sat
E
N
1
st
s
=
2
nd
s
→
i
=
j
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
125
124
ex
ω
ω
ω
ω
⊢
M
Sat
E
N
1
st
s
=
2
nd
u
→
M
Sat
E
N
1
st
s
=
2
nd
s
→
i
=
j
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
126
106
125
syl6bi
ω
ω
ω
ω
⊢
1
st
u
=
1
st
s
→
M
Sat
E
N
1
st
u
=
2
nd
u
→
M
Sat
E
N
1
st
s
=
2
nd
s
→
i
=
j
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
127
126
com24
ω
ω
ω
ω
⊢
1
st
u
=
1
st
s
→
i
=
j
→
M
Sat
E
N
1
st
s
=
2
nd
s
→
M
Sat
E
N
1
st
u
=
2
nd
u
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
128
127
impcom
ω
ω
ω
ω
⊢
i
=
j
∧
1
st
u
=
1
st
s
→
M
Sat
E
N
1
st
s
=
2
nd
s
→
M
Sat
E
N
1
st
u
=
2
nd
u
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
129
128
com13
ω
ω
ω
ω
⊢
M
Sat
E
N
1
st
u
=
2
nd
u
→
M
Sat
E
N
1
st
s
=
2
nd
s
→
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
130
105
129
syl6
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
→
u
∈
M
Sat
E
N
→
M
Sat
E
N
1
st
s
=
2
nd
s
→
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
131
130
com23
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
→
M
Sat
E
N
1
st
s
=
2
nd
s
→
u
∈
M
Sat
E
N
→
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
132
103
131
syld
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
→
s
∈
M
Sat
E
N
→
u
∈
M
Sat
E
N
→
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
133
132
imp
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
→
u
∈
M
Sat
E
N
→
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
134
133
adantr
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
→
u
∈
M
Sat
E
N
→
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
135
134
imp
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
∧
u
∈
M
Sat
E
N
→
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
136
135
adantld
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
∧
u
∈
M
Sat
E
N
→
2
𝑜
=
2
𝑜
∧
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
137
136
ad2antrr
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
∧
u
∈
M
Sat
E
N
∧
i
∈
ω
∧
x
=
∀
𝑔
i
1
st
u
→
2
𝑜
=
2
𝑜
∧
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
138
101
137
sylbid
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
∧
u
∈
M
Sat
E
N
∧
i
∈
ω
∧
x
=
∀
𝑔
i
1
st
u
→
x
=
∀
𝑔
j
1
st
s
→
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
139
138
impd
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
∧
u
∈
M
Sat
E
N
∧
i
∈
ω
∧
x
=
∀
𝑔
i
1
st
u
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
140
139
ex
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
∧
u
∈
M
Sat
E
N
∧
i
∈
ω
→
x
=
∀
𝑔
i
1
st
u
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
141
140
com34
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
∧
u
∈
M
Sat
E
N
∧
i
∈
ω
→
x
=
∀
𝑔
i
1
st
u
→
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
y
=
z
142
141
impd
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
∧
u
∈
M
Sat
E
N
∧
i
∈
ω
→
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
y
=
z
143
142
rexlimdva
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
∧
u
∈
M
Sat
E
N
→
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
y
=
z
144
92
143
jaod
ω
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
∧
u
∈
M
Sat
E
N
→
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
y
=
z
145
144
rexlimdva
ω
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
→
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
y
=
z
146
145
com23
ω
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
∧
j
∈
ω
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
147
146
rexlimdva
ω
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
→
∃
j
∈
ω
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
148
70
147
jaod
ω
ω
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
∧
s
∈
M
Sat
E
N
→
∃
r
∈
M
Sat
E
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∨
∃
j
∈
ω
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
149
148
rexlimdva
ω
ω
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
→
∃
s
∈
M
Sat
E
N
∃
r
∈
M
Sat
E
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∨
∃
j
∈
ω
x
=
∀
𝑔
j
1
st
s
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
j
k
∪
f
↾
ω
∖
j
∈
2
nd
s
→
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
150
31
149
biimtrid
ω
ω
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
→
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
151
150
impd
ω
ω
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
→
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
∧
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
152
151
alrimivv
ω
ω
ω
ω
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
→
∀
y
∀
z
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
∧
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
153
eqeq1
ω
ω
⊢
y
=
z
→
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
↔
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
154
153
anbi2d
ω
ω
⊢
y
=
z
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
↔
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
155
154
rexbidv
ω
ω
⊢
y
=
z
→
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
↔
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
156
eqeq1
ω
ω
ω
ω
⊢
y
=
z
→
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
↔
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
157
156
anbi2d
ω
ω
ω
ω
⊢
y
=
z
→
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
↔
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
158
157
rexbidv
ω
ω
ω
ω
ω
ω
⊢
y
=
z
→
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
↔
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
159
155
158
orbi12d
ω
ω
ω
ω
ω
ω
ω
ω
⊢
y
=
z
→
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
↔
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
160
159
rexbidv
ω
ω
ω
ω
ω
ω
ω
ω
⊢
y
=
z
→
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
↔
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
161
160
mo4
ω
ω
ω
ω
ω
ω
ω
ω
ω
ω
ω
ω
⊢
∃
*
y
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
↔
∀
y
∀
z
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
∧
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
z
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
z
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
→
y
=
z
162
152
161
sylibr
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
→
∃
*
y
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
163
162
alrimiv
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
→
∀
x
∃
*
y
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
164
funopab
ω
ω
ω
ω
ω
ω
ω
ω
⊢
Fun
x
y
|
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
↔
∀
x
∃
*
y
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u
165
163
164
sylibr
ω
ω
ω
ω
⊢
Fun
M
Sat
E
N
→
Fun
x
y
|
∃
u
∈
M
Sat
E
N
∃
v
∈
M
Sat
E
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
k
∈
M
i
k
∪
f
↾
ω
∖
i
∈
2
nd
u