Metamath Proof Explorer


Theorem satffunlem1lem1

Description: Lemma for satffunlem1 . (Contributed by AV, 17-Oct-2023)

Ref Expression
Assertion satffunlem1lem1 FunMSatENFunxy|uMSatENvMSatENx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|kMikfωi2ndu

Proof

Step Hyp Ref Expression
1 fveq2 u=s1stu=1sts
2 fveq2 v=r1stv=1str
3 1 2 oveqan12d u=sv=r1stu𝑔1stv=1sts𝑔1str
4 3 eqeq2d u=sv=rx=1stu𝑔1stvx=1sts𝑔1str
5 fveq2 u=s2ndu=2nds
6 fveq2 v=r2ndv=2ndr
7 5 6 ineqan12d u=sv=r2ndu2ndv=2nds2ndr
8 7 difeq2d u=sv=rMω2ndu2ndv=Mω2nds2ndr
9 8 eqeq2d u=sv=ry=Mω2ndu2ndvy=Mω2nds2ndr
10 4 9 anbi12d u=sv=rx=1stu𝑔1stvy=Mω2ndu2ndvx=1sts𝑔1stry=Mω2nds2ndr
11 10 cbvrexdva u=svMSatENx=1stu𝑔1stvy=Mω2ndu2ndvrMSatENx=1sts𝑔1stry=Mω2nds2ndr
12 simpr u=si=ji=j
13 1 adantr u=si=j1stu=1sts
14 12 13 goaleq12d u=si=j𝑔i1stu=𝑔j1sts
15 14 eqeq2d u=si=jx=𝑔i1stux=𝑔j1sts
16 opeq1 i=jik=jk
17 16 sneqd i=jik=jk
18 sneq i=ji=j
19 18 difeq2d i=jωi=ωj
20 19 reseq2d i=jfωi=fωj
21 17 20 uneq12d i=jikfωi=jkfωj
22 21 adantl u=si=jikfωi=jkfωj
23 5 adantr u=si=j2ndu=2nds
24 22 23 eleq12d u=si=jikfωi2ndujkfωj2nds
25 24 ralbidv u=si=jkMikfωi2ndukMjkfωj2nds
26 25 rabbidv u=si=jfMω|kMikfωi2ndu=fMω|kMjkfωj2nds
27 26 eqeq2d u=si=jy=fMω|kMikfωi2nduy=fMω|kMjkfωj2nds
28 15 27 anbi12d u=si=jx=𝑔i1stuy=fMω|kMikfωi2ndux=𝑔j1stsy=fMω|kMjkfωj2nds
29 28 cbvrexdva u=siωx=𝑔i1stuy=fMω|kMikfωi2ndujωx=𝑔j1stsy=fMω|kMjkfωj2nds
30 11 29 orbi12d u=svMSatENx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|kMikfωi2ndurMSatENx=1sts𝑔1stry=Mω2nds2ndrjωx=𝑔j1stsy=fMω|kMjkfωj2nds
31 30 cbvrexvw uMSatENvMSatENx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|kMikfωi2ndusMSatENrMSatENx=1sts𝑔1stry=Mω2nds2ndrjωx=𝑔j1stsy=fMω|kMjkfωj2nds
32 simp-4l FunMSatENsMSatENrMSatENuMSatENvMSatENFunMSatEN
33 simpr FunMSatENsMSatENrMSatENuMSatENuMSatEN
34 33 anim1i FunMSatENsMSatENrMSatENuMSatENvMSatENuMSatENvMSatEN
35 simpr FunMSatENsMSatENsMSatEN
36 35 anim1i FunMSatENsMSatENrMSatENsMSatENrMSatEN
37 36 ad2antrr FunMSatENsMSatENrMSatENuMSatENvMSatENsMSatENrMSatEN
38 satffunlem FunMSatENuMSatENvMSatENsMSatENrMSatENx=1stu𝑔1stvz=Mω2ndu2ndvx=1sts𝑔1stry=Mω2nds2ndrz=y
39 38 eqcomd FunMSatENuMSatENvMSatENsMSatENrMSatENx=1stu𝑔1stvz=Mω2ndu2ndvx=1sts𝑔1stry=Mω2nds2ndry=z
40 39 3exp FunMSatENuMSatENvMSatENsMSatENrMSatENx=1stu𝑔1stvz=Mω2ndu2ndvx=1sts𝑔1stry=Mω2nds2ndry=z
41 32 34 37 40 syl3anc FunMSatENsMSatENrMSatENuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndvx=1sts𝑔1stry=Mω2nds2ndry=z
42 41 rexlimdva FunMSatENsMSatENrMSatENuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndvx=1sts𝑔1stry=Mω2nds2ndry=z
43 eqeq1 x=𝑔i1stux=1sts𝑔1str𝑔i1stu=1sts𝑔1str
44 df-goal 𝑔i1stu=2𝑜i1stu
45 fvex 1stsV
46 fvex 1strV
47 gonafv 1stsV1strV1sts𝑔1str=1𝑜1sts1str
48 45 46 47 mp2an 1sts𝑔1str=1𝑜1sts1str
49 44 48 eqeq12i 𝑔i1stu=1sts𝑔1str2𝑜i1stu=1𝑜1sts1str
50 2oex 2𝑜V
51 opex i1stuV
52 50 51 opth 2𝑜i1stu=1𝑜1sts1str2𝑜=1𝑜i1stu=1sts1str
53 1one2o 1𝑜2𝑜
54 df-ne 1𝑜2𝑜¬1𝑜=2𝑜
55 pm2.21 ¬1𝑜=2𝑜1𝑜=2𝑜y=Mω2nds2ndry=z
56 54 55 sylbi 1𝑜2𝑜1𝑜=2𝑜y=Mω2nds2ndry=z
57 53 56 ax-mp 1𝑜=2𝑜y=Mω2nds2ndry=z
58 57 eqcoms 2𝑜=1𝑜y=Mω2nds2ndry=z
59 58 adantr 2𝑜=1𝑜i1stu=1sts1stry=Mω2nds2ndry=z
60 52 59 sylbi 2𝑜i1stu=1𝑜1sts1stry=Mω2nds2ndry=z
61 49 60 sylbi 𝑔i1stu=1sts𝑔1stry=Mω2nds2ndry=z
62 43 61 syl6bi x=𝑔i1stux=1sts𝑔1stry=Mω2nds2ndry=z
63 62 impd x=𝑔i1stux=1sts𝑔1stry=Mω2nds2ndry=z
64 63 adantr x=𝑔i1stuz=fMω|kMikfωi2ndux=1sts𝑔1stry=Mω2nds2ndry=z
65 64 a1i FunMSatENsMSatENrMSatENuMSatENiωx=𝑔i1stuz=fMω|kMikfωi2ndux=1sts𝑔1stry=Mω2nds2ndry=z
66 65 rexlimdva FunMSatENsMSatENrMSatENuMSatENiωx=𝑔i1stuz=fMω|kMikfωi2ndux=1sts𝑔1stry=Mω2nds2ndry=z
67 42 66 jaod FunMSatENsMSatENrMSatENuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2ndux=1sts𝑔1stry=Mω2nds2ndry=z
68 67 rexlimdva FunMSatENsMSatENrMSatENuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2ndux=1sts𝑔1stry=Mω2nds2ndry=z
69 68 com23 FunMSatENsMSatENrMSatENx=1sts𝑔1stry=Mω2nds2ndruMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2nduy=z
70 69 rexlimdva FunMSatENsMSatENrMSatENx=1sts𝑔1stry=Mω2nds2ndruMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2nduy=z
71 eqeq1 x=𝑔j1stsx=1stu𝑔1stv𝑔j1sts=1stu𝑔1stv
72 df-goal 𝑔j1sts=2𝑜j1sts
73 fvex 1stuV
74 fvex 1stvV
75 gonafv 1stuV1stvV1stu𝑔1stv=1𝑜1stu1stv
76 73 74 75 mp2an 1stu𝑔1stv=1𝑜1stu1stv
77 72 76 eqeq12i 𝑔j1sts=1stu𝑔1stv2𝑜j1sts=1𝑜1stu1stv
78 opex j1stsV
79 50 78 opth 2𝑜j1sts=1𝑜1stu1stv2𝑜=1𝑜j1sts=1stu1stv
80 pm2.21 ¬1𝑜=2𝑜1𝑜=2𝑜y=z
81 54 80 sylbi 1𝑜2𝑜1𝑜=2𝑜y=z
82 53 81 ax-mp 1𝑜=2𝑜y=z
83 82 eqcoms 2𝑜=1𝑜y=z
84 83 adantr 2𝑜=1𝑜j1sts=1stu1stvy=z
85 79 84 sylbi 2𝑜j1sts=1𝑜1stu1stvy=z
86 77 85 sylbi 𝑔j1sts=1stu𝑔1stvy=z
87 71 86 syl6bi x=𝑔j1stsx=1stu𝑔1stvy=z
88 87 adantr x=𝑔j1stsy=fMω|kMjkfωj2ndsx=1stu𝑔1stvy=z
89 88 com12 x=1stu𝑔1stvx=𝑔j1stsy=fMω|kMjkfωj2ndsy=z
90 89 adantr x=1stu𝑔1stvz=Mω2ndu2ndvx=𝑔j1stsy=fMω|kMjkfωj2ndsy=z
91 90 a1i FunMSatENsMSatENjωuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndvx=𝑔j1stsy=fMω|kMjkfωj2ndsy=z
92 91 rexlimdva FunMSatENsMSatENjωuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndvx=𝑔j1stsy=fMω|kMjkfωj2ndsy=z
93 eqeq1 x=𝑔i1stux=𝑔j1sts𝑔i1stu=𝑔j1sts
94 44 72 eqeq12i 𝑔i1stu=𝑔j1sts2𝑜i1stu=2𝑜j1sts
95 50 51 opth 2𝑜i1stu=2𝑜j1sts2𝑜=2𝑜i1stu=j1sts
96 vex iV
97 96 73 opth i1stu=j1stsi=j1stu=1sts
98 97 anbi2i 2𝑜=2𝑜i1stu=j1sts2𝑜=2𝑜i=j1stu=1sts
99 94 95 98 3bitri 𝑔i1stu=𝑔j1sts2𝑜=2𝑜i=j1stu=1sts
100 93 99 bitrdi x=𝑔i1stux=𝑔j1sts2𝑜=2𝑜i=j1stu=1sts
101 100 adantl FunMSatENsMSatENjωuMSatENiωx=𝑔i1stux=𝑔j1sts2𝑜=2𝑜i=j1stu=1sts
102 funfv1st2nd FunMSatENsMSatENMSatEN1sts=2nds
103 102 ex FunMSatENsMSatENMSatEN1sts=2nds
104 funfv1st2nd FunMSatENuMSatENMSatEN1stu=2ndu
105 104 ex FunMSatENuMSatENMSatEN1stu=2ndu
106 fveqeq2 1stu=1stsMSatEN1stu=2nduMSatEN1sts=2ndu
107 eqtr2 MSatEN1sts=2nduMSatEN1sts=2nds2ndu=2nds
108 opeq1 j=ijk=ik
109 108 sneqd j=ijk=ik
110 sneq j=ij=i
111 110 difeq2d j=iωj=ωi
112 111 reseq2d j=ifωj=fωi
113 109 112 uneq12d j=ijkfωj=ikfωi
114 113 eqcoms i=jjkfωj=ikfωi
115 114 adantl 2ndu=2ndsi=jjkfωj=ikfωi
116 simpl 2ndu=2ndsi=j2ndu=2nds
117 116 eqcomd 2ndu=2ndsi=j2nds=2ndu
118 115 117 eleq12d 2ndu=2ndsi=jjkfωj2ndsikfωi2ndu
119 118 ralbidv 2ndu=2ndsi=jkMjkfωj2ndskMikfωi2ndu
120 119 rabbidv 2ndu=2ndsi=jfMω|kMjkfωj2nds=fMω|kMikfωi2ndu
121 eqeq12 y=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=zfMω|kMjkfωj2nds=fMω|kMikfωi2ndu
122 120 121 syl5ibrcom 2ndu=2ndsi=jy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
123 122 exp4b 2ndu=2ndsi=jy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
124 107 123 syl MSatEN1sts=2nduMSatEN1sts=2ndsi=jy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
125 124 ex MSatEN1sts=2nduMSatEN1sts=2ndsi=jy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
126 106 125 syl6bi 1stu=1stsMSatEN1stu=2nduMSatEN1sts=2ndsi=jy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
127 126 com24 1stu=1stsi=jMSatEN1sts=2ndsMSatEN1stu=2nduy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
128 127 impcom i=j1stu=1stsMSatEN1sts=2ndsMSatEN1stu=2nduy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
129 128 com13 MSatEN1stu=2nduMSatEN1sts=2ndsi=j1stu=1stsy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
130 105 129 syl6 FunMSatENuMSatENMSatEN1sts=2ndsi=j1stu=1stsy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
131 130 com23 FunMSatENMSatEN1sts=2ndsuMSatENi=j1stu=1stsy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
132 103 131 syld FunMSatENsMSatENuMSatENi=j1stu=1stsy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
133 132 imp FunMSatENsMSatENuMSatENi=j1stu=1stsy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
134 133 adantr FunMSatENsMSatENjωuMSatENi=j1stu=1stsy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
135 134 imp FunMSatENsMSatENjωuMSatENi=j1stu=1stsy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
136 135 adantld FunMSatENsMSatENjωuMSatEN2𝑜=2𝑜i=j1stu=1stsy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
137 136 ad2antrr FunMSatENsMSatENjωuMSatENiωx=𝑔i1stu2𝑜=2𝑜i=j1stu=1stsy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
138 101 137 sylbid FunMSatENsMSatENjωuMSatENiωx=𝑔i1stux=𝑔j1stsy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
139 138 impd FunMSatENsMSatENjωuMSatENiωx=𝑔i1stux=𝑔j1stsy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
140 139 ex FunMSatENsMSatENjωuMSatENiωx=𝑔i1stux=𝑔j1stsy=fMω|kMjkfωj2ndsz=fMω|kMikfωi2nduy=z
141 140 com34 FunMSatENsMSatENjωuMSatENiωx=𝑔i1stuz=fMω|kMikfωi2ndux=𝑔j1stsy=fMω|kMjkfωj2ndsy=z
142 141 impd FunMSatENsMSatENjωuMSatENiωx=𝑔i1stuz=fMω|kMikfωi2ndux=𝑔j1stsy=fMω|kMjkfωj2ndsy=z
143 142 rexlimdva FunMSatENsMSatENjωuMSatENiωx=𝑔i1stuz=fMω|kMikfωi2ndux=𝑔j1stsy=fMω|kMjkfωj2ndsy=z
144 92 143 jaod FunMSatENsMSatENjωuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2ndux=𝑔j1stsy=fMω|kMjkfωj2ndsy=z
145 144 rexlimdva FunMSatENsMSatENjωuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2ndux=𝑔j1stsy=fMω|kMjkfωj2ndsy=z
146 145 com23 FunMSatENsMSatENjωx=𝑔j1stsy=fMω|kMjkfωj2ndsuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2nduy=z
147 146 rexlimdva FunMSatENsMSatENjωx=𝑔j1stsy=fMω|kMjkfωj2ndsuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2nduy=z
148 70 147 jaod FunMSatENsMSatENrMSatENx=1sts𝑔1stry=Mω2nds2ndrjωx=𝑔j1stsy=fMω|kMjkfωj2ndsuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2nduy=z
149 148 rexlimdva FunMSatENsMSatENrMSatENx=1sts𝑔1stry=Mω2nds2ndrjωx=𝑔j1stsy=fMω|kMjkfωj2ndsuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2nduy=z
150 31 149 biimtrid FunMSatENuMSatENvMSatENx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|kMikfωi2nduuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2nduy=z
151 150 impd FunMSatENuMSatENvMSatENx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|kMikfωi2nduuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2nduy=z
152 151 alrimivv FunMSatENyzuMSatENvMSatENx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|kMikfωi2nduuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2nduy=z
153 eqeq1 y=zy=Mω2ndu2ndvz=Mω2ndu2ndv
154 153 anbi2d y=zx=1stu𝑔1stvy=Mω2ndu2ndvx=1stu𝑔1stvz=Mω2ndu2ndv
155 154 rexbidv y=zvMSatENx=1stu𝑔1stvy=Mω2ndu2ndvvMSatENx=1stu𝑔1stvz=Mω2ndu2ndv
156 eqeq1 y=zy=fMω|kMikfωi2nduz=fMω|kMikfωi2ndu
157 156 anbi2d y=zx=𝑔i1stuy=fMω|kMikfωi2ndux=𝑔i1stuz=fMω|kMikfωi2ndu
158 157 rexbidv y=ziωx=𝑔i1stuy=fMω|kMikfωi2nduiωx=𝑔i1stuz=fMω|kMikfωi2ndu
159 155 158 orbi12d y=zvMSatENx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|kMikfωi2nduvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2ndu
160 159 rexbidv y=zuMSatENvMSatENx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|kMikfωi2nduuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2ndu
161 160 mo4 *yuMSatENvMSatENx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|kMikfωi2nduyzuMSatENvMSatENx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|kMikfωi2nduuMSatENvMSatENx=1stu𝑔1stvz=Mω2ndu2ndviωx=𝑔i1stuz=fMω|kMikfωi2nduy=z
162 152 161 sylibr FunMSatEN*yuMSatENvMSatENx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|kMikfωi2ndu
163 162 alrimiv FunMSatENx*yuMSatENvMSatENx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|kMikfωi2ndu
164 funopab Funxy|uMSatENvMSatENx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|kMikfωi2ndux*yuMSatENvMSatENx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|kMikfωi2ndu
165 163 164 sylibr FunMSatENFunxy|uMSatENvMSatENx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|kMikfωi2ndu