| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sectpropd.1 |
|
| 2 |
|
sectpropd.2 |
|
| 3 |
|
simpr |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
df-sect |
|
| 10 |
9
|
mptrcl |
|
| 11 |
10
|
adantl |
|
| 12 |
4 5 6 7 8 11
|
sectffval |
|
| 13 |
|
df-mpo |
|
| 14 |
12 13
|
eqtrdi |
|
| 15 |
3 14
|
eleqtrd |
|
| 16 |
|
eloprab1st2nd |
|
| 17 |
15 16
|
syl |
|
| 18 |
|
eqid |
|
| 19 |
1
|
adantr |
|
| 20 |
19
|
adantr |
|
| 21 |
2
|
adantr |
|
| 22 |
21
|
adantr |
|
| 23 |
|
eleq1 |
|
| 24 |
23
|
anbi1d |
|
| 25 |
|
oveq1 |
|
| 26 |
25
|
eleq2d |
|
| 27 |
|
oveq2 |
|
| 28 |
27
|
eleq2d |
|
| 29 |
26 28
|
anbi12d |
|
| 30 |
|
opeq1 |
|
| 31 |
|
id |
|
| 32 |
30 31
|
oveq12d |
|
| 33 |
32
|
oveqd |
|
| 34 |
|
fveq2 |
|
| 35 |
33 34
|
eqeq12d |
|
| 36 |
29 35
|
anbi12d |
|
| 37 |
36
|
opabbidv |
|
| 38 |
37
|
eqeq2d |
|
| 39 |
24 38
|
anbi12d |
|
| 40 |
|
eleq1 |
|
| 41 |
40
|
anbi2d |
|
| 42 |
|
oveq2 |
|
| 43 |
42
|
eleq2d |
|
| 44 |
|
oveq1 |
|
| 45 |
44
|
eleq2d |
|
| 46 |
43 45
|
anbi12d |
|
| 47 |
|
opeq2 |
|
| 48 |
47
|
oveq1d |
|
| 49 |
48
|
oveqd |
|
| 50 |
49
|
eqeq1d |
|
| 51 |
46 50
|
anbi12d |
|
| 52 |
51
|
opabbidv |
|
| 53 |
52
|
eqeq2d |
|
| 54 |
41 53
|
anbi12d |
|
| 55 |
|
eqeq1 |
|
| 56 |
55
|
anbi2d |
|
| 57 |
39 54 56
|
eloprabi |
|
| 58 |
15 57
|
syl |
|
| 59 |
58
|
simplld |
|
| 60 |
59
|
adantr |
|
| 61 |
58
|
simplrd |
|
| 62 |
61
|
adantr |
|
| 63 |
|
simprl |
|
| 64 |
|
simprr |
|
| 65 |
4 5 6 18 20 22 60 62 60 63 64
|
comfeqval |
|
| 66 |
19
|
homfeqbas |
|
| 67 |
59 66
|
eleqtrd |
|
| 68 |
67
|
elfvexd |
|
| 69 |
19 21 11 68
|
cidpropd |
|
| 70 |
69
|
fveq1d |
|
| 71 |
70
|
adantr |
|
| 72 |
65 71
|
eqeq12d |
|
| 73 |
72
|
pm5.32da |
|
| 74 |
|
eqid |
|
| 75 |
4 5 74 19 59 61
|
homfeqval |
|
| 76 |
75
|
eleq2d |
|
| 77 |
4 5 74 19 61 59
|
homfeqval |
|
| 78 |
77
|
eleq2d |
|
| 79 |
76 78
|
anbi12d |
|
| 80 |
79
|
anbi1d |
|
| 81 |
73 80
|
bitrd |
|
| 82 |
81
|
opabbidv |
|
| 83 |
58
|
simprd |
|
| 84 |
|
eqid |
|
| 85 |
|
eqid |
|
| 86 |
|
eqid |
|
| 87 |
19 21 11 68
|
catpropd |
|
| 88 |
11 87
|
mpbid |
|
| 89 |
61 66
|
eleqtrd |
|
| 90 |
84 74 18 85 86 88 67 89
|
sectfval |
|
| 91 |
82 83 90
|
3eqtr4rd |
|
| 92 |
|
sectfn |
|
| 93 |
88 92
|
syl |
|
| 94 |
|
fnbrovb |
|
| 95 |
93 67 89 94
|
syl12anc |
|
| 96 |
91 95
|
mpbid |
|
| 97 |
|
df-br |
|
| 98 |
96 97
|
sylib |
|
| 99 |
17 98
|
eqeltrd |
|