Metamath Proof Explorer


Theorem sectpropdlem

Description: Lemma for sectpropd . (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypotheses sectpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
sectpropd.2 φ comp 𝑓 C = comp 𝑓 D
Assertion sectpropdlem φ P Sect C P Sect D

Proof

Step Hyp Ref Expression
1 sectpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
2 sectpropd.2 φ comp 𝑓 C = comp 𝑓 D
3 simpr φ P Sect C P Sect C
4 eqid Base C = Base C
5 eqid Hom C = Hom C
6 eqid comp C = comp C
7 eqid Id C = Id C
8 eqid Sect C = Sect C
9 df-sect Sect = c Cat x Base c , y Base c f g | [˙ Hom c / h]˙ f x h y g y h x g x y comp c x f = Id c x
10 9 mptrcl P Sect C C Cat
11 10 adantl φ P Sect C C Cat
12 4 5 6 7 8 11 sectffval φ P Sect C Sect C = x Base C , y Base C f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x
13 df-mpo x Base C , y Base C f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x = x y z | x Base C y Base C z = f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x
14 12 13 eqtrdi φ P Sect C Sect C = x y z | x Base C y Base C z = f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x
15 3 14 eleqtrd φ P Sect C P x y z | x Base C y Base C z = f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x
16 eloprab1st2nd P x y z | x Base C y Base C z = f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x P = 1 st 1 st P 2 nd 1 st P 2 nd P
17 15 16 syl φ P Sect C P = 1 st 1 st P 2 nd 1 st P 2 nd P
18 eqid comp D = comp D
19 1 adantr φ P Sect C Hom 𝑓 C = Hom 𝑓 D
20 19 adantr φ P Sect C f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P Hom 𝑓 C = Hom 𝑓 D
21 2 adantr φ P Sect C comp 𝑓 C = comp 𝑓 D
22 21 adantr φ P Sect C f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P comp 𝑓 C = comp 𝑓 D
23 eleq1 x = 1 st 1 st P x Base C 1 st 1 st P Base C
24 23 anbi1d x = 1 st 1 st P x Base C y Base C 1 st 1 st P Base C y Base C
25 oveq1 x = 1 st 1 st P x Hom C y = 1 st 1 st P Hom C y
26 25 eleq2d x = 1 st 1 st P f x Hom C y f 1 st 1 st P Hom C y
27 oveq2 x = 1 st 1 st P y Hom C x = y Hom C 1 st 1 st P
28 27 eleq2d x = 1 st 1 st P g y Hom C x g y Hom C 1 st 1 st P
29 26 28 anbi12d x = 1 st 1 st P f x Hom C y g y Hom C x f 1 st 1 st P Hom C y g y Hom C 1 st 1 st P
30 opeq1 x = 1 st 1 st P x y = 1 st 1 st P y
31 id x = 1 st 1 st P x = 1 st 1 st P
32 30 31 oveq12d x = 1 st 1 st P x y comp C x = 1 st 1 st P y comp C 1 st 1 st P
33 32 oveqd x = 1 st 1 st P g x y comp C x f = g 1 st 1 st P y comp C 1 st 1 st P f
34 fveq2 x = 1 st 1 st P Id C x = Id C 1 st 1 st P
35 33 34 eqeq12d x = 1 st 1 st P g x y comp C x f = Id C x g 1 st 1 st P y comp C 1 st 1 st P f = Id C 1 st 1 st P
36 29 35 anbi12d x = 1 st 1 st P f x Hom C y g y Hom C x g x y comp C x f = Id C x f 1 st 1 st P Hom C y g y Hom C 1 st 1 st P g 1 st 1 st P y comp C 1 st 1 st P f = Id C 1 st 1 st P
37 36 opabbidv x = 1 st 1 st P f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x = f g | f 1 st 1 st P Hom C y g y Hom C 1 st 1 st P g 1 st 1 st P y comp C 1 st 1 st P f = Id C 1 st 1 st P
38 37 eqeq2d x = 1 st 1 st P z = f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x z = f g | f 1 st 1 st P Hom C y g y Hom C 1 st 1 st P g 1 st 1 st P y comp C 1 st 1 st P f = Id C 1 st 1 st P
39 24 38 anbi12d x = 1 st 1 st P x Base C y Base C z = f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x 1 st 1 st P Base C y Base C z = f g | f 1 st 1 st P Hom C y g y Hom C 1 st 1 st P g 1 st 1 st P y comp C 1 st 1 st P f = Id C 1 st 1 st P
40 eleq1 y = 2 nd 1 st P y Base C 2 nd 1 st P Base C
41 40 anbi2d y = 2 nd 1 st P 1 st 1 st P Base C y Base C 1 st 1 st P Base C 2 nd 1 st P Base C
42 oveq2 y = 2 nd 1 st P 1 st 1 st P Hom C y = 1 st 1 st P Hom C 2 nd 1 st P
43 42 eleq2d y = 2 nd 1 st P f 1 st 1 st P Hom C y f 1 st 1 st P Hom C 2 nd 1 st P
44 oveq1 y = 2 nd 1 st P y Hom C 1 st 1 st P = 2 nd 1 st P Hom C 1 st 1 st P
45 44 eleq2d y = 2 nd 1 st P g y Hom C 1 st 1 st P g 2 nd 1 st P Hom C 1 st 1 st P
46 43 45 anbi12d y = 2 nd 1 st P f 1 st 1 st P Hom C y g y Hom C 1 st 1 st P f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P
47 opeq2 y = 2 nd 1 st P 1 st 1 st P y = 1 st 1 st P 2 nd 1 st P
48 47 oveq1d y = 2 nd 1 st P 1 st 1 st P y comp C 1 st 1 st P = 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P
49 48 oveqd y = 2 nd 1 st P g 1 st 1 st P y comp C 1 st 1 st P f = g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f
50 49 eqeq1d y = 2 nd 1 st P g 1 st 1 st P y comp C 1 st 1 st P f = Id C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P
51 46 50 anbi12d y = 2 nd 1 st P f 1 st 1 st P Hom C y g y Hom C 1 st 1 st P g 1 st 1 st P y comp C 1 st 1 st P f = Id C 1 st 1 st P f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P
52 51 opabbidv y = 2 nd 1 st P f g | f 1 st 1 st P Hom C y g y Hom C 1 st 1 st P g 1 st 1 st P y comp C 1 st 1 st P f = Id C 1 st 1 st P = f g | f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P
53 52 eqeq2d y = 2 nd 1 st P z = f g | f 1 st 1 st P Hom C y g y Hom C 1 st 1 st P g 1 st 1 st P y comp C 1 st 1 st P f = Id C 1 st 1 st P z = f g | f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P
54 41 53 anbi12d y = 2 nd 1 st P 1 st 1 st P Base C y Base C z = f g | f 1 st 1 st P Hom C y g y Hom C 1 st 1 st P g 1 st 1 st P y comp C 1 st 1 st P f = Id C 1 st 1 st P 1 st 1 st P Base C 2 nd 1 st P Base C z = f g | f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P
55 eqeq1 z = 2 nd P z = f g | f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P 2 nd P = f g | f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P
56 55 anbi2d z = 2 nd P 1 st 1 st P Base C 2 nd 1 st P Base C z = f g | f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P 1 st 1 st P Base C 2 nd 1 st P Base C 2 nd P = f g | f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P
57 39 54 56 eloprabi P x y z | x Base C y Base C z = f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x 1 st 1 st P Base C 2 nd 1 st P Base C 2 nd P = f g | f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P
58 15 57 syl φ P Sect C 1 st 1 st P Base C 2 nd 1 st P Base C 2 nd P = f g | f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P
59 58 simplld φ P Sect C 1 st 1 st P Base C
60 59 adantr φ P Sect C f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P 1 st 1 st P Base C
61 58 simplrd φ P Sect C 2 nd 1 st P Base C
62 61 adantr φ P Sect C f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P 2 nd 1 st P Base C
63 simprl φ P Sect C f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P f 1 st 1 st P Hom C 2 nd 1 st P
64 simprr φ P Sect C f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 2 nd 1 st P Hom C 1 st 1 st P
65 4 5 6 18 20 22 60 62 60 63 64 comfeqval φ P Sect C f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = g 1 st 1 st P 2 nd 1 st P comp D 1 st 1 st P f
66 19 homfeqbas φ P Sect C Base C = Base D
67 59 66 eleqtrd φ P Sect C 1 st 1 st P Base D
68 67 elfvexd φ P Sect C D V
69 19 21 11 68 cidpropd φ P Sect C Id C = Id D
70 69 fveq1d φ P Sect C Id C 1 st 1 st P = Id D 1 st 1 st P
71 70 adantr φ P Sect C f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P Id C 1 st 1 st P = Id D 1 st 1 st P
72 65 71 eqeq12d φ P Sect C f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp D 1 st 1 st P f = Id D 1 st 1 st P
73 72 pm5.32da φ P Sect C f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp D 1 st 1 st P f = Id D 1 st 1 st P
74 eqid Hom D = Hom D
75 4 5 74 19 59 61 homfeqval φ P Sect C 1 st 1 st P Hom C 2 nd 1 st P = 1 st 1 st P Hom D 2 nd 1 st P
76 75 eleq2d φ P Sect C f 1 st 1 st P Hom C 2 nd 1 st P f 1 st 1 st P Hom D 2 nd 1 st P
77 4 5 74 19 61 59 homfeqval φ P Sect C 2 nd 1 st P Hom C 1 st 1 st P = 2 nd 1 st P Hom D 1 st 1 st P
78 77 eleq2d φ P Sect C g 2 nd 1 st P Hom C 1 st 1 st P g 2 nd 1 st P Hom D 1 st 1 st P
79 76 78 anbi12d φ P Sect C f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P f 1 st 1 st P Hom D 2 nd 1 st P g 2 nd 1 st P Hom D 1 st 1 st P
80 79 anbi1d φ P Sect C f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp D 1 st 1 st P f = Id D 1 st 1 st P f 1 st 1 st P Hom D 2 nd 1 st P g 2 nd 1 st P Hom D 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp D 1 st 1 st P f = Id D 1 st 1 st P
81 73 80 bitrd φ P Sect C f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P f 1 st 1 st P Hom D 2 nd 1 st P g 2 nd 1 st P Hom D 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp D 1 st 1 st P f = Id D 1 st 1 st P
82 81 opabbidv φ P Sect C f g | f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P = f g | f 1 st 1 st P Hom D 2 nd 1 st P g 2 nd 1 st P Hom D 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp D 1 st 1 st P f = Id D 1 st 1 st P
83 58 simprd φ P Sect C 2 nd P = f g | f 1 st 1 st P Hom C 2 nd 1 st P g 2 nd 1 st P Hom C 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp C 1 st 1 st P f = Id C 1 st 1 st P
84 eqid Base D = Base D
85 eqid Id D = Id D
86 eqid Sect D = Sect D
87 19 21 11 68 catpropd φ P Sect C C Cat D Cat
88 11 87 mpbid φ P Sect C D Cat
89 61 66 eleqtrd φ P Sect C 2 nd 1 st P Base D
90 84 74 18 85 86 88 67 89 sectfval φ P Sect C 1 st 1 st P Sect D 2 nd 1 st P = f g | f 1 st 1 st P Hom D 2 nd 1 st P g 2 nd 1 st P Hom D 1 st 1 st P g 1 st 1 st P 2 nd 1 st P comp D 1 st 1 st P f = Id D 1 st 1 st P
91 82 83 90 3eqtr4rd φ P Sect C 1 st 1 st P Sect D 2 nd 1 st P = 2 nd P
92 sectfn D Cat Sect D Fn Base D × Base D
93 88 92 syl φ P Sect C Sect D Fn Base D × Base D
94 fnbrovb Sect D Fn Base D × Base D 1 st 1 st P Base D 2 nd 1 st P Base D 1 st 1 st P Sect D 2 nd 1 st P = 2 nd P 1 st 1 st P 2 nd 1 st P Sect D 2 nd P
95 93 67 89 94 syl12anc φ P Sect C 1 st 1 st P Sect D 2 nd 1 st P = 2 nd P 1 st 1 st P 2 nd 1 st P Sect D 2 nd P
96 91 95 mpbid φ P Sect C 1 st 1 st P 2 nd 1 st P Sect D 2 nd P
97 df-br 1 st 1 st P 2 nd 1 st P Sect D 2 nd P 1 st 1 st P 2 nd 1 st P 2 nd P Sect D
98 96 97 sylib φ P Sect C 1 st 1 st P 2 nd 1 st P 2 nd P Sect D
99 17 98 eqeltrd φ P Sect C P Sect D