| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfliminfmpt.p |
|
| 2 |
|
smfliminfmpt.x |
|
| 3 |
|
smfliminfmpt.n |
|
| 4 |
|
smfliminfmpt.m |
|
| 5 |
|
smfliminfmpt.z |
|
| 6 |
|
smfliminfmpt.s |
|
| 7 |
|
smfliminfmpt.b |
|
| 8 |
|
smfliminfmpt.f |
|
| 9 |
|
smfliminfmpt.d |
|
| 10 |
|
smfliminfmpt.g |
|
| 11 |
10
|
a1i |
|
| 12 |
9
|
a1i |
|
| 13 |
|
simpr |
|
| 14 |
|
nfv |
|
| 15 |
1 14
|
nfan |
|
| 16 |
|
simpll |
|
| 17 |
5
|
uztrn2 |
|
| 18 |
17
|
adantll |
|
| 19 |
|
simpr |
|
| 20 |
8
|
elexd |
|
| 21 |
|
eqid |
|
| 22 |
21
|
fvmpt2 |
|
| 23 |
19 20 22
|
syl2anc |
|
| 24 |
23
|
dmeqd |
|
| 25 |
|
nfv |
|
| 26 |
2 25
|
nfan |
|
| 27 |
|
eqid |
|
| 28 |
7
|
3expa |
|
| 29 |
26 27 28
|
dmmptdf |
|
| 30 |
24 29
|
eqtr2d |
|
| 31 |
16 18 30
|
syl2anc |
|
| 32 |
15 31
|
iineq2d |
|
| 33 |
3 32
|
iuneq2df |
|
| 34 |
33
|
adantr |
|
| 35 |
13 34
|
eleqtrd |
|
| 36 |
35
|
adantrr |
|
| 37 |
|
eliun |
|
| 38 |
37
|
biimpi |
|
| 39 |
38
|
adantl |
|
| 40 |
|
nfv |
|
| 41 |
|
nfcv |
|
| 42 |
|
nfii1 |
|
| 43 |
41 42
|
nfel |
|
| 44 |
1 14 43
|
nf3an |
|
| 45 |
23
|
fveq1d |
|
| 46 |
16 18 45
|
syl2anc |
|
| 47 |
46
|
3adantl3 |
|
| 48 |
|
eliinid |
|
| 49 |
48
|
3ad2antl3 |
|
| 50 |
|
simpl1 |
|
| 51 |
|
simp2 |
|
| 52 |
51 17
|
sylan |
|
| 53 |
50 52 49 7
|
syl3anc |
|
| 54 |
27
|
fvmpt2 |
|
| 55 |
49 53 54
|
syl2anc |
|
| 56 |
47 55
|
eqtrd |
|
| 57 |
44 56
|
mpteq2da |
|
| 58 |
57
|
fveq2d |
|
| 59 |
|
nfcv |
|
| 60 |
|
nfcv |
|
| 61 |
|
eqid |
|
| 62 |
5
|
eluzelz2 |
|
| 63 |
62
|
uzidd |
|
| 64 |
63
|
3ad2ant2 |
|
| 65 |
|
fvexd |
|
| 66 |
44 59 60 5 61 51 64 65
|
liminfequzmpt2 |
|
| 67 |
44 59 60 5 61 51 64 53
|
liminfequzmpt2 |
|
| 68 |
58 66 67
|
3eqtr4d |
|
| 69 |
68
|
3exp |
|
| 70 |
3 40 69
|
rexlimd |
|
| 71 |
70
|
adantr |
|
| 72 |
39 71
|
mpd |
|
| 73 |
72
|
adantrr |
|
| 74 |
|
simprr |
|
| 75 |
73 74
|
eqeltrd |
|
| 76 |
36 75
|
jca |
|
| 77 |
|
simpl |
|
| 78 |
|
simpr |
|
| 79 |
33
|
eqcomd |
|
| 80 |
79
|
adantr |
|
| 81 |
78 80
|
eleqtrd |
|
| 82 |
81
|
adantrr |
|
| 83 |
|
simprr |
|
| 84 |
|
simp2 |
|
| 85 |
72
|
eqcomd |
|
| 86 |
85
|
3adant3 |
|
| 87 |
|
simp3 |
|
| 88 |
86 87
|
eqeltrd |
|
| 89 |
84 88
|
jca |
|
| 90 |
77 82 83 89
|
syl3anc |
|
| 91 |
76 90
|
impbida |
|
| 92 |
2 91
|
rabbida3 |
|
| 93 |
12 92
|
eqtrd |
|
| 94 |
9
|
eleq2i |
|
| 95 |
94
|
biimpi |
|
| 96 |
|
rabidim1 |
|
| 97 |
95 96
|
syl |
|
| 98 |
97 85
|
sylan2 |
|
| 99 |
2 93 98
|
mpteq12da |
|
| 100 |
11 99
|
eqtrd |
|
| 101 |
|
nfmpt1 |
|
| 102 |
|
nfcv |
|
| 103 |
|
nfmpt1 |
|
| 104 |
102 103
|
nfmpt |
|
| 105 |
1 8
|
fmptd2f |
|
| 106 |
|
eqid |
|
| 107 |
|
eqid |
|
| 108 |
101 104 4 5 6 105 106 107
|
smfliminf |
|
| 109 |
100 108
|
eqeltrd |
|