| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsuplem5.a |  | 
						
							| 2 |  | smflimsuplem5.b |  | 
						
							| 3 |  | smflimsuplem5.m |  | 
						
							| 4 |  | smflimsuplem5.z |  | 
						
							| 5 |  | smflimsuplem5.s |  | 
						
							| 6 |  | smflimsuplem5.f |  | 
						
							| 7 |  | smflimsuplem5.e |  | 
						
							| 8 |  | smflimsuplem5.h |  | 
						
							| 9 |  | smflimsuplem5.r |  | 
						
							| 10 |  | smflimsuplem5.n |  | 
						
							| 11 |  | smflimsuplem5.x |  | 
						
							| 12 | 4 | eleq2i |  | 
						
							| 13 | 12 | biimpi |  | 
						
							| 14 |  | uzss |  | 
						
							| 15 | 13 14 | syl |  | 
						
							| 16 | 15 4 | sseqtrrdi |  | 
						
							| 17 | 10 16 | syl |  | 
						
							| 18 | 17 | sselda |  | 
						
							| 19 |  | nfcv |  | 
						
							| 20 |  | nfrab1 |  | 
						
							| 21 | 19 20 | nfmpt |  | 
						
							| 22 | 7 21 | nfcxfr |  | 
						
							| 23 |  | nfcv |  | 
						
							| 24 | 22 23 | nffv |  | 
						
							| 25 |  | fvex |  | 
						
							| 26 | 24 25 | mptexf |  | 
						
							| 27 | 26 | a1i |  | 
						
							| 28 | 8 | fvmpt2 |  | 
						
							| 29 | 18 27 28 | syl2anc |  | 
						
							| 30 | 29 | fveq1d |  | 
						
							| 31 |  | nfcv |  | 
						
							| 32 |  | nfcv |  | 
						
							| 33 |  | nfcv |  | 
						
							| 34 |  | fveq2 |  | 
						
							| 35 | 34 | mpteq2dv |  | 
						
							| 36 | 35 | rneqd |  | 
						
							| 37 | 36 | supeq1d |  | 
						
							| 38 | 24 31 32 33 37 | cbvmptf |  | 
						
							| 39 |  | simpl |  | 
						
							| 40 | 39 | fveq2d |  | 
						
							| 41 | 40 | mpteq2dva |  | 
						
							| 42 | 41 | rneqd |  | 
						
							| 43 | 42 | supeq1d |  | 
						
							| 44 | 43 | eleq1d |  | 
						
							| 45 |  | uzss |  | 
						
							| 46 |  | iinss1 |  | 
						
							| 47 | 45 46 | syl |  | 
						
							| 48 | 47 | adantl |  | 
						
							| 49 | 11 | adantr |  | 
						
							| 50 | 48 49 | sseldd |  | 
						
							| 51 |  | nfv |  | 
						
							| 52 | 2 51 | nfan |  | 
						
							| 53 |  | eqid |  | 
						
							| 54 |  | simpll |  | 
						
							| 55 | 45 | sselda |  | 
						
							| 56 | 55 | adantll |  | 
						
							| 57 | 5 | adantr |  | 
						
							| 58 |  | simpl |  | 
						
							| 59 | 17 | sselda |  | 
						
							| 60 | 6 | ffvelcdmda |  | 
						
							| 61 | 58 59 60 | syl2anc |  | 
						
							| 62 |  | eqid |  | 
						
							| 63 | 57 61 62 | smff |  | 
						
							| 64 |  | eliin |  | 
						
							| 65 | 11 64 | syl |  | 
						
							| 66 | 11 65 | mpbid |  | 
						
							| 67 | 66 | adantr |  | 
						
							| 68 |  | simpr |  | 
						
							| 69 |  | rspa |  | 
						
							| 70 | 67 68 69 | syl2anc |  | 
						
							| 71 | 63 70 | ffvelcdmd |  | 
						
							| 72 | 54 56 71 | syl2anc |  | 
						
							| 73 |  | eluzelz |  | 
						
							| 74 | 73 | adantl |  | 
						
							| 75 | 3 | adantr |  | 
						
							| 76 |  | fvex |  | 
						
							| 77 | 76 | a1i |  | 
						
							| 78 | 52 74 75 53 4 72 77 | limsupequzmpt |  | 
						
							| 79 | 9 | adantr |  | 
						
							| 80 | 78 79 | eqeltrd |  | 
						
							| 81 | 80 | renepnfd |  | 
						
							| 82 | 52 53 72 81 | limsupubuzmpt |  | 
						
							| 83 |  | uzid2 |  | 
						
							| 84 | 83 | ne0d |  | 
						
							| 85 | 84 | adantl |  | 
						
							| 86 | 52 85 72 | supxrre3rnmpt |  | 
						
							| 87 | 82 86 | mpbird |  | 
						
							| 88 | 44 50 87 | elrabd |  | 
						
							| 89 |  | simpl |  | 
						
							| 90 | 89 | fveq2d |  | 
						
							| 91 | 90 | mpteq2dva |  | 
						
							| 92 | 91 | rneqd |  | 
						
							| 93 | 92 | supeq1d |  | 
						
							| 94 | 93 | eleq1d |  | 
						
							| 95 | 94 | cbvrabv |  | 
						
							| 96 | 88 95 | eleqtrdi |  | 
						
							| 97 |  | eqid |  | 
						
							| 98 |  | fvex |  | 
						
							| 99 | 98 | dmex |  | 
						
							| 100 | 99 | rgenw |  | 
						
							| 101 | 100 | a1i |  | 
						
							| 102 | 84 101 | iinexd |  | 
						
							| 103 | 102 | adantl |  | 
						
							| 104 | 97 103 | rabexd |  | 
						
							| 105 | 7 | fvmpt2 |  | 
						
							| 106 | 18 104 105 | syl2anc |  | 
						
							| 107 | 96 106 | eleqtrrd |  | 
						
							| 108 | 38 43 107 87 | fvmptd3 |  | 
						
							| 109 | 30 108 | eqtrd |  | 
						
							| 110 | 1 109 | mpteq2da |  | 
						
							| 111 | 4 | eluzelz2 |  | 
						
							| 112 | 10 111 | syl |  | 
						
							| 113 |  | eqid |  | 
						
							| 114 | 76 | a1i |  | 
						
							| 115 | 76 | a1i |  | 
						
							| 116 | 2 112 3 113 4 114 115 | limsupequzmpt |  | 
						
							| 117 | 116 9 | eqeltrd |  | 
						
							| 118 | 2 112 113 71 117 | supcnvlimsupmpt |  | 
						
							| 119 | 110 118 | eqbrtrd |  |