| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfsupmpt.n |
|
| 2 |
|
smfsupmpt.x |
|
| 3 |
|
smfsupmpt.y |
|
| 4 |
|
smfsupmpt.m |
|
| 5 |
|
smfsupmpt.z |
|
| 6 |
|
smfsupmpt.s |
|
| 7 |
|
smfsupmpt.b |
|
| 8 |
|
smfsupmpt.f |
|
| 9 |
|
smfsupmpt.d |
|
| 10 |
|
smfsupmpt.g |
|
| 11 |
|
eqidd |
|
| 12 |
11 8
|
fvmpt2d |
|
| 13 |
12
|
dmeqd |
|
| 14 |
|
nfcv |
|
| 15 |
14
|
nfcri |
|
| 16 |
2 15
|
nfan |
|
| 17 |
|
eqid |
|
| 18 |
7
|
3expa |
|
| 19 |
16 17 18
|
dmmptdf |
|
| 20 |
13 19
|
eqtr2d |
|
| 21 |
1 20
|
iineq2d |
|
| 22 |
|
nfcv |
|
| 23 |
|
nfmpt1 |
|
| 24 |
14 23
|
nfmpt |
|
| 25 |
|
nfcv |
|
| 26 |
24 25
|
nffv |
|
| 27 |
26
|
nfdm |
|
| 28 |
14 27
|
nfiin |
|
| 29 |
22 28
|
rabeqf |
|
| 30 |
21 29
|
syl |
|
| 31 |
|
nfv |
|
| 32 |
3 31
|
nfan |
|
| 33 |
|
nfii1 |
|
| 34 |
33
|
nfcri |
|
| 35 |
1 34
|
nfan |
|
| 36 |
|
simpll |
|
| 37 |
|
simpr |
|
| 38 |
|
eliinid |
|
| 39 |
38
|
adantll |
|
| 40 |
13 19
|
eqtrd |
|
| 41 |
40
|
adantlr |
|
| 42 |
39 41
|
eleqtrd |
|
| 43 |
12
|
fveq1d |
|
| 44 |
43
|
3adant3 |
|
| 45 |
|
simp3 |
|
| 46 |
|
fvmpt4 |
|
| 47 |
45 7 46
|
syl2anc |
|
| 48 |
44 47
|
eqtr2d |
|
| 49 |
48
|
breq1d |
|
| 50 |
36 37 42 49
|
syl3anc |
|
| 51 |
35 50
|
ralbida |
|
| 52 |
32 51
|
rexbid |
|
| 53 |
2 52
|
rabbida |
|
| 54 |
30 53
|
eqtrd |
|
| 55 |
9 54
|
eqtrid |
|
| 56 |
|
nfcv |
|
| 57 |
|
nfra1 |
|
| 58 |
56 57
|
nfrexw |
|
| 59 |
|
nfii1 |
|
| 60 |
58 59
|
nfrabw |
|
| 61 |
9 60
|
nfcxfr |
|
| 62 |
61
|
nfcri |
|
| 63 |
1 62
|
nfan |
|
| 64 |
|
simpll |
|
| 65 |
|
simpr |
|
| 66 |
|
rabidim1 |
|
| 67 |
66 9
|
eleq2s |
|
| 68 |
|
eliinid |
|
| 69 |
67 68
|
sylan |
|
| 70 |
69
|
adantll |
|
| 71 |
64 65 70 48
|
syl3anc |
|
| 72 |
63 71
|
mpteq2da |
|
| 73 |
72
|
rneqd |
|
| 74 |
73
|
supeq1d |
|
| 75 |
2 55 74
|
mpteq12da |
|
| 76 |
10 75
|
eqtrid |
|
| 77 |
|
nfmpt1 |
|
| 78 |
1 8
|
fmptd2f |
|
| 79 |
|
eqid |
|
| 80 |
|
eqid |
|
| 81 |
77 24 4 5 6 78 79 80
|
smfsup |
|
| 82 |
76 81
|
eqeltrd |
|