| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srgbinom.s |
|
| 2 |
|
srgbinom.m |
|
| 3 |
|
srgbinom.t |
|
| 4 |
|
srgbinom.a |
|
| 5 |
|
srgbinom.g |
|
| 6 |
|
srgbinom.e |
|
| 7 |
|
srgbinomlem.r |
|
| 8 |
|
srgbinomlem.a |
|
| 9 |
|
srgbinomlem.b |
|
| 10 |
|
srgbinomlem.c |
|
| 11 |
|
srgbinomlem.n |
|
| 12 |
|
srgbinomlem.i |
|
| 13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
srgbinomlem3 |
|
| 14 |
1 2 3 4 5 6 7 8 9 10 11 12
|
srgbinomlem4 |
|
| 15 |
13 14
|
oveq12d |
|
| 16 |
5
|
srgmgp |
|
| 17 |
7 16
|
syl |
|
| 18 |
|
srgmnd |
|
| 19 |
7 18
|
syl |
|
| 20 |
1 4
|
mndcl |
|
| 21 |
19 8 9 20
|
syl3anc |
|
| 22 |
17 11 21
|
3jca |
|
| 23 |
22
|
adantr |
|
| 24 |
5 1
|
mgpbas |
|
| 25 |
5 2
|
mgpplusg |
|
| 26 |
24 6 25
|
mulgnn0p1 |
|
| 27 |
23 26
|
syl |
|
| 28 |
24 6 17 11 21
|
mulgnn0cld |
|
| 29 |
28 8 9
|
3jca |
|
| 30 |
7 29
|
jca |
|
| 31 |
30
|
adantr |
|
| 32 |
1 4 2
|
srgdi |
|
| 33 |
31 32
|
syl |
|
| 34 |
27 33
|
eqtrd |
|
| 35 |
|
elfzelz |
|
| 36 |
|
bcpasc |
|
| 37 |
11 35 36
|
syl2an |
|
| 38 |
37
|
oveq1d |
|
| 39 |
19
|
adantr |
|
| 40 |
|
bccl |
|
| 41 |
11 35 40
|
syl2an |
|
| 42 |
35
|
adantl |
|
| 43 |
|
peano2zm |
|
| 44 |
42 43
|
syl |
|
| 45 |
|
bccl |
|
| 46 |
11 44 45
|
syl2an2r |
|
| 47 |
7
|
adantr |
|
| 48 |
17
|
adantr |
|
| 49 |
|
fznn0sub |
|
| 50 |
49
|
adantl |
|
| 51 |
8
|
adantr |
|
| 52 |
24 6 48 50 51
|
mulgnn0cld |
|
| 53 |
|
elfznn0 |
|
| 54 |
53
|
adantl |
|
| 55 |
9
|
adantr |
|
| 56 |
24 6 48 54 55
|
mulgnn0cld |
|
| 57 |
1 2
|
srgcl |
|
| 58 |
47 52 56 57
|
syl3anc |
|
| 59 |
1 3 4
|
mulgnn0dir |
|
| 60 |
39 41 46 58 59
|
syl13anc |
|
| 61 |
38 60
|
eqtr3d |
|
| 62 |
61
|
mpteq2dva |
|
| 63 |
62
|
oveq2d |
|
| 64 |
|
srgcmn |
|
| 65 |
7 64
|
syl |
|
| 66 |
|
fzfid |
|
| 67 |
1 3 39 41 58
|
mulgnn0cld |
|
| 68 |
35 43
|
syl |
|
| 69 |
11 68 45
|
syl2an |
|
| 70 |
1 3 39 69 58
|
mulgnn0cld |
|
| 71 |
|
eqid |
|
| 72 |
|
eqid |
|
| 73 |
1 4 65 66 67 70 71 72
|
gsummptfidmadd |
|
| 74 |
63 73
|
eqtrd |
|
| 75 |
74
|
adantr |
|
| 76 |
15 34 75
|
3eqtr4d |
|