Metamath Proof Explorer


Theorem srgbinomlem

Description: Lemma for srgbinom . Inductive step, analogous to binomlem . (Contributed by AV, 24-Aug-2019)

Ref Expression
Hypotheses srgbinom.s S=BaseR
srgbinom.m ×˙=R
srgbinom.t ·˙=R
srgbinom.a +˙=+R
srgbinom.g G=mulGrpR
srgbinom.e ×˙=G
srgbinomlem.r φRSRing
srgbinomlem.a φAS
srgbinomlem.b φBS
srgbinomlem.c φA×˙B=B×˙A
srgbinomlem.n φN0
srgbinomlem.i ψN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B
Assertion srgbinomlem φψN+1×˙A+˙B=Rk=0N+1(N+1k)·˙N+1-k×˙A×˙k×˙B

Proof

Step Hyp Ref Expression
1 srgbinom.s S=BaseR
2 srgbinom.m ×˙=R
3 srgbinom.t ·˙=R
4 srgbinom.a +˙=+R
5 srgbinom.g G=mulGrpR
6 srgbinom.e ×˙=G
7 srgbinomlem.r φRSRing
8 srgbinomlem.a φAS
9 srgbinomlem.b φBS
10 srgbinomlem.c φA×˙B=B×˙A
11 srgbinomlem.n φN0
12 srgbinomlem.i ψN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B
13 1 2 3 4 5 6 7 8 9 10 11 12 srgbinomlem3 φψN×˙A+˙B×˙A=Rk=0N+1(Nk)·˙N+1-k×˙A×˙k×˙B
14 1 2 3 4 5 6 7 8 9 10 11 12 srgbinomlem4 φψN×˙A+˙B×˙B=Rk=0N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
15 13 14 oveq12d φψN×˙A+˙B×˙A+˙N×˙A+˙B×˙B=Rk=0N+1(Nk)·˙N+1-k×˙A×˙k×˙B+˙Rk=0N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
16 5 srgmgp RSRingGMnd
17 7 16 syl φGMnd
18 srgmnd RSRingRMnd
19 7 18 syl φRMnd
20 1 4 mndcl RMndASBSA+˙BS
21 19 8 9 20 syl3anc φA+˙BS
22 17 11 21 3jca φGMndN0A+˙BS
23 22 adantr φψGMndN0A+˙BS
24 5 1 mgpbas S=BaseG
25 5 2 mgpplusg ×˙=+G
26 24 6 25 mulgnn0p1 GMndN0A+˙BSN+1×˙A+˙B=N×˙A+˙B×˙A+˙B
27 23 26 syl φψN+1×˙A+˙B=N×˙A+˙B×˙A+˙B
28 24 6 17 11 21 mulgnn0cld φN×˙A+˙BS
29 28 8 9 3jca φN×˙A+˙BSASBS
30 7 29 jca φRSRingN×˙A+˙BSASBS
31 30 adantr φψRSRingN×˙A+˙BSASBS
32 1 4 2 srgdi RSRingN×˙A+˙BSASBSN×˙A+˙B×˙A+˙B=N×˙A+˙B×˙A+˙N×˙A+˙B×˙B
33 31 32 syl φψN×˙A+˙B×˙A+˙B=N×˙A+˙B×˙A+˙N×˙A+˙B×˙B
34 27 33 eqtrd φψN+1×˙A+˙B=N×˙A+˙B×˙A+˙N×˙A+˙B×˙B
35 elfzelz k0N+1k
36 bcpasc N0k(Nk)+(Nk1)=(N+1k)
37 11 35 36 syl2an φk0N+1(Nk)+(Nk1)=(N+1k)
38 37 oveq1d φk0N+1(Nk)+(Nk1)·˙N+1-k×˙A×˙k×˙B=(N+1k)·˙N+1-k×˙A×˙k×˙B
39 19 adantr φk0N+1RMnd
40 bccl N0k(Nk)0
41 11 35 40 syl2an φk0N+1(Nk)0
42 35 adantl φk0N+1k
43 peano2zm kk1
44 42 43 syl φk0N+1k1
45 bccl N0k1(Nk1)0
46 11 44 45 syl2an2r φk0N+1(Nk1)0
47 7 adantr φk0N+1RSRing
48 17 adantr φk0N+1GMnd
49 fznn0sub k0N+1N+1-k0
50 49 adantl φk0N+1N+1-k0
51 8 adantr φk0N+1AS
52 24 6 48 50 51 mulgnn0cld φk0N+1N+1-k×˙AS
53 elfznn0 k0N+1k0
54 53 adantl φk0N+1k0
55 9 adantr φk0N+1BS
56 24 6 48 54 55 mulgnn0cld φk0N+1k×˙BS
57 1 2 srgcl RSRingN+1-k×˙ASk×˙BSN+1-k×˙A×˙k×˙BS
58 47 52 56 57 syl3anc φk0N+1N+1-k×˙A×˙k×˙BS
59 1 3 4 mulgnn0dir RMnd(Nk)0(Nk1)0N+1-k×˙A×˙k×˙BS(Nk)+(Nk1)·˙N+1-k×˙A×˙k×˙B=(Nk)·˙N+1-k×˙A×˙k×˙B+˙(Nk1)·˙N+1-k×˙A×˙k×˙B
60 39 41 46 58 59 syl13anc φk0N+1(Nk)+(Nk1)·˙N+1-k×˙A×˙k×˙B=(Nk)·˙N+1-k×˙A×˙k×˙B+˙(Nk1)·˙N+1-k×˙A×˙k×˙B
61 38 60 eqtr3d φk0N+1(N+1k)·˙N+1-k×˙A×˙k×˙B=(Nk)·˙N+1-k×˙A×˙k×˙B+˙(Nk1)·˙N+1-k×˙A×˙k×˙B
62 61 mpteq2dva φk0N+1(N+1k)·˙N+1-k×˙A×˙k×˙B=k0N+1(Nk)·˙N+1-k×˙A×˙k×˙B+˙(Nk1)·˙N+1-k×˙A×˙k×˙B
63 62 oveq2d φRk=0N+1(N+1k)·˙N+1-k×˙A×˙k×˙B=Rk=0N+1(Nk)·˙N+1-k×˙A×˙k×˙B+˙(Nk1)·˙N+1-k×˙A×˙k×˙B
64 srgcmn RSRingRCMnd
65 7 64 syl φRCMnd
66 fzfid φ0N+1Fin
67 1 3 39 41 58 mulgnn0cld φk0N+1(Nk)·˙N+1-k×˙A×˙k×˙BS
68 35 43 syl k0N+1k1
69 11 68 45 syl2an φk0N+1(Nk1)0
70 1 3 39 69 58 mulgnn0cld φk0N+1(Nk1)·˙N+1-k×˙A×˙k×˙BS
71 eqid k0N+1(Nk)·˙N+1-k×˙A×˙k×˙B=k0N+1(Nk)·˙N+1-k×˙A×˙k×˙B
72 eqid k0N+1(Nk1)·˙N+1-k×˙A×˙k×˙B=k0N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
73 1 4 65 66 67 70 71 72 gsummptfidmadd φRk=0N+1(Nk)·˙N+1-k×˙A×˙k×˙B+˙(Nk1)·˙N+1-k×˙A×˙k×˙B=Rk=0N+1(Nk)·˙N+1-k×˙A×˙k×˙B+˙Rk=0N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
74 63 73 eqtrd φRk=0N+1(N+1k)·˙N+1-k×˙A×˙k×˙B=Rk=0N+1(Nk)·˙N+1-k×˙A×˙k×˙B+˙Rk=0N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
75 74 adantr φψRk=0N+1(N+1k)·˙N+1-k×˙A×˙k×˙B=Rk=0N+1(Nk)·˙N+1-k×˙A×˙k×˙B+˙Rk=0N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
76 15 34 75 3eqtr4d φψN+1×˙A+˙B=Rk=0N+1(N+1k)·˙N+1-k×˙A×˙k×˙B