Metamath Proof Explorer


Theorem stoweidlem16

Description: Lemma for stoweid . The subset Y of functions in the algebra A , with values in [ 0 , 1 ], is closed under multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem16.1 tφ
stoweidlem16.2 Y=hA|tT0htht1
stoweidlem16.3 H=tTftgt
stoweidlem16.4 φfAf:T
stoweidlem16.5 φfAgAtTftgtA
Assertion stoweidlem16 φfYgYHY

Proof

Step Hyp Ref Expression
1 stoweidlem16.1 tφ
2 stoweidlem16.2 Y=hA|tT0htht1
3 stoweidlem16.3 H=tTftgt
4 stoweidlem16.4 φfAf:T
5 stoweidlem16.5 φfAgAtTftgtA
6 simp1 φfYgYφ
7 fveq1 h=fht=ft
8 7 breq2d h=f0ht0ft
9 7 breq1d h=fht1ft1
10 8 9 anbi12d h=f0htht10ftft1
11 10 ralbidv h=ftT0htht1tT0ftft1
12 11 2 elrab2 fYfAtT0ftft1
13 12 simplbi fYfA
14 13 3ad2ant2 φfYgYfA
15 fveq1 h=ght=gt
16 15 breq2d h=g0ht0gt
17 15 breq1d h=ght1gt1
18 16 17 anbi12d h=g0htht10gtgt1
19 18 ralbidv h=gtT0htht1tT0gtgt1
20 19 2 elrab2 gYgAtT0gtgt1
21 20 simplbi gYgA
22 21 3ad2ant3 φfYgYgA
23 6 14 22 5 syl3anc φfYgYtTftgtA
24 3 23 eqeltrid φfYgYHA
25 nfra1 ttT0htht1
26 nfcv _tA
27 25 26 nfrabw _thA|tT0htht1
28 2 27 nfcxfr _tY
29 28 nfcri tfY
30 28 nfcri tgY
31 1 29 30 nf3an tφfYgY
32 6 14 jca φfYgYφfA
33 32 adantr φfYgYtTφfA
34 33 4 syl φfYgYtTf:T
35 simpr φfYgYtTtT
36 34 35 ffvelcdmd φfYgYtTft
37 6 22 jca φfYgYφgA
38 eleq1w f=gfAgA
39 38 anbi2d f=gφfAφgA
40 feq1 f=gf:Tg:T
41 39 40 imbi12d f=gφfAf:TφgAg:T
42 41 4 vtoclg gAφgAg:T
43 22 37 42 sylc φfYgYg:T
44 43 ffvelcdmda φfYgYtTgt
45 12 simprbi fYtT0ftft1
46 45 3ad2ant2 φfYgYtT0ftft1
47 46 r19.21bi φfYgYtT0ftft1
48 47 simpld φfYgYtT0ft
49 20 simprbi gYtT0gtgt1
50 49 3ad2ant3 φfYgYtT0gtgt1
51 50 r19.21bi φfYgYtT0gtgt1
52 51 simpld φfYgYtT0gt
53 36 44 48 52 mulge0d φfYgYtT0ftgt
54 36 44 remulcld φfYgYtTftgt
55 3 fvmpt2 tTftgtHt=ftgt
56 35 54 55 syl2anc φfYgYtTHt=ftgt
57 53 56 breqtrrd φfYgYtT0Ht
58 1red φfYgYtT1
59 47 simprd φfYgYtTft1
60 51 simprd φfYgYtTgt1
61 36 58 44 58 48 52 59 60 lemul12ad φfYgYtTftgt11
62 1t1e1 11=1
63 61 62 breqtrdi φfYgYtTftgt1
64 56 63 eqbrtrd φfYgYtTHt1
65 57 64 jca φfYgYtT0HtHt1
66 65 ex φfYgYtT0HtHt1
67 31 66 ralrimi φfYgYtT0HtHt1
68 nfmpt1 _ttTftgt
69 3 68 nfcxfr _tH
70 69 nfeq2 th=H
71 fveq1 h=Hht=Ht
72 71 breq2d h=H0ht0Ht
73 71 breq1d h=Hht1Ht1
74 72 73 anbi12d h=H0htht10HtHt1
75 70 74 ralbid h=HtT0htht1tT0HtHt1
76 75 elrab HhA|tT0htht1HAtT0HtHt1
77 24 67 76 sylanbrc φfYgYHhA|tT0htht1
78 77 2 eleqtrrdi φfYgYHY